Suppr超能文献

利用ToxCast体外生物活性和化学结构预测肝毒性。

Predicting hepatotoxicity using ToxCast in vitro bioactivity and chemical structure.

作者信息

Liu Jie, Mansouri Kamel, Judson Richard S, Martin Matthew T, Hong Huixiao, Chen Minjun, Xu Xiaowei, Thomas Russell S, Shah Imran

机构信息

†National Center for Computational Toxicology, Office of Research and Development, U.S. Environmental Protection Agency, Research Triangle Park, North Carolina 27711, United States.

‡Department of Information Science, University of Arkansas at Little Rock, Arkansas 72204, United States.

出版信息

Chem Res Toxicol. 2015 Apr 20;28(4):738-51. doi: 10.1021/tx500501h. Epub 2015 Mar 9.

Abstract

The U.S. Tox21 and EPA ToxCast program screen thousands of environmental chemicals for bioactivity using hundreds of high-throughput in vitro assays to build predictive models of toxicity. We represented chemicals based on bioactivity and chemical structure descriptors, then used supervised machine learning to predict in vivo hepatotoxic effects. A set of 677 chemicals was represented by 711 in vitro bioactivity descriptors (from ToxCast assays), 4,376 chemical structure descriptors (from QikProp, OpenBabel, PaDEL, and PubChem), and three hepatotoxicity categories (from animal studies). Hepatotoxicants were defined by rat liver histopathology observed after chronic chemical testing and grouped into hypertrophy (161), injury (101) and proliferative lesions (99). Classifiers were built using six machine learning algorithms: linear discriminant analysis (LDA), Naïve Bayes (NB), support vector machines (SVM), classification and regression trees (CART), k-nearest neighbors (KNN), and an ensemble of these classifiers (ENSMB). Classifiers of hepatotoxicity were built using chemical structure descriptors, ToxCast bioactivity descriptors, and hybrid descriptors. Predictive performance was evaluated using 10-fold cross-validation testing and in-loop, filter-based, feature subset selection. Hybrid classifiers had the best balanced accuracy for predicting hypertrophy (0.84 ± 0.08), injury (0.80 ± 0.09), and proliferative lesions (0.80 ± 0.10). Though chemical and bioactivity classifiers had a similar balanced accuracy, the former were more sensitive, and the latter were more specific. CART, ENSMB, and SVM classifiers performed the best, and nuclear receptor activation and mitochondrial functions were frequently found in highly predictive classifiers of hepatotoxicity. ToxCast and ToxRefDB provide the largest and richest publicly available data sets for mining linkages between the in vitro bioactivity of environmental chemicals and their adverse histopathological outcomes. Our findings demonstrate the utility of high-throughput assays for characterizing rodent hepatotoxicants, the benefit of using hybrid representations that integrate bioactivity and chemical structure, and the need for objective evaluation of classification performance.

摘要

美国的Tox21和美国环境保护局(EPA)的ToxCast项目使用数百种高通量体外试验对数千种环境化学物质的生物活性进行筛选,以建立毒性预测模型。我们基于生物活性和化学结构描述符来表征化学物质,然后使用监督式机器学习来预测体内肝毒性效应。一组677种化学物质由711个体外生物活性描述符(来自ToxCast试验)、4376个化学结构描述符(来自QikProp、OpenBabel、PaDEL和PubChem)以及三种肝毒性类别(来自动物研究)来表征。肝毒性物质通过慢性化学测试后观察到的大鼠肝脏组织病理学来定义,并分为肥大(161种)、损伤(101种)和增殖性病变(99种)。使用六种机器学习算法构建分类器:线性判别分析(LDA)、朴素贝叶斯(NB)、支持向量机(SVM)、分类与回归树(CART)、k近邻(KNN)以及这些分类器的集成(ENSMB)。使用化学结构描述符、ToxCast生物活性描述符和混合描述符构建肝毒性分类器。使用10折交叉验证测试和基于循环、基于过滤器的特征子集选择来评估预测性能。混合分类器在预测肥大(0.84±0.08)、损伤(0.80±0.09)和增殖性病变(0.80±0.10)方面具有最佳的平衡准确率。虽然化学和生物活性分类器的平衡准确率相似,但前者更敏感,后者更具特异性。CART、ENSMB和SVM分类器表现最佳,并且在高度预测性的肝毒性分类器中经常发现核受体激活和线粒体功能。ToxCast和ToxRefDB提供了最大且最丰富的公开可用数据集,用于挖掘环境化学物质的体外生物活性与其不良组织病理学结果之间的联系。我们的研究结果证明了高通量试验在表征啮齿动物肝毒性物质方面的实用性、使用整合生物活性和化学结构的混合表征的益处以及对分类性能进行客观评估的必要性。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验