Suppr超能文献

用于相关噪声中简单检测和辨别任务的分类图像。

Classification images for simple detection and discrimination tasks in correlated noise.

作者信息

Abbey Craig K, Eckstein Miguel P

机构信息

Department of Psychology, University of California, Santa Barbara, California 93106, USA.

出版信息

J Opt Soc Am A Opt Image Sci Vis. 2007 Dec;24(12):B110-24. doi: 10.1364/josaa.24.00b110.

Abstract

We use the classification image technique to investigate the effect of white noise and various correlated Gaussian noise textures (low-pass, high-pass, and band-pass) on observer performance in detection and discrimination tasks. For these tasks, performance is generally enhanced by an observer's ability to "prewhiten" correlated noise as part of the formation of a decision variable. We find that observer efficiency in these tasks is well represented by the measured classification images and that human observers show strong evidence of adaptation to different correlated noise textures. This adaptation is captured in the frequency weighting of the classification images.

摘要

我们使用分类图像技术来研究白噪声和各种相关高斯噪声纹理(低通、高通和带通)对观察者在检测和辨别任务中的表现的影响。对于这些任务,作为决策变量形成的一部分,观察者“预白化”相关噪声的能力通常会提高表现。我们发现,这些任务中观察者的效率可以通过测量的分类图像得到很好的体现,并且人类观察者表现出强烈的适应不同相关噪声纹理的证据。这种适应在分类图像的频率加权中得以体现。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验