Department of Mathematics "Guido Castelnuovo", Sapienza University of Rome, Rome, Italy.
Istituto per le Applicazioni del Calcolo "M. Picone", Consiglio Nazionale delle Ricerche, Rome, Italy.
Phys Rev E. 2016 Apr;93:042134. doi: 10.1103/PhysRevE.93.042134. Epub 2016 Apr 26.
We propose a version of the pure temporal epidemic type aftershock sequences (ETAS) model: the ETAS model with correlated magnitudes. As for the standard case, we assume the Gutenberg-Richter law to be the probability density for the magnitudes of the background events. Instead, the magnitude of the triggered shocks is assumed to be probabilistically dependent on that of the relative mother events. This probabilistic dependence is motivated by some recent works in the literature and by the results of a statistical analysis made on some seismic catalogs [Spassiani and Sebastiani, J. Geophys. Res. 121, 903 (2016)10.1002/2015JB012398]. On the basis of the experimental evidences obtained in the latter paper for the real catalogs, we theoretically derive the probability density function for the magnitudes of the triggered shocks proposed in Spassiani and Sebastiani and there used for the analysis of two simulated catalogs. To this aim, we impose a fundamental condition: averaging over all the magnitudes of the mother events, we must obtain again the Gutenberg-Richter law. This ensures the validity of this law at any event's generation when ignoring past seismicity. The ETAS model with correlated magnitudes is then theoretically analyzed here. In particular, we use the tool of the probability generating function and the Palm theory, in order to derive an approximation of the probability of zero events in a small time interval and to interpret the results in terms of the interevent time between consecutive shocks, the latter being a very useful random variable in the assessment of seismic hazard.
我们提出了一个纯时间余震序列(ETAS)模型的版本:具有相关震级的 ETAS 模型。对于标准情况,我们假设古登堡-里希特定律是背景事件震级的概率密度函数。相反,触发地震的震级被假设为与相对母事件的震级具有概率依赖性。这种概率依赖性是受文献中的一些最新工作以及对一些地震目录进行的统计分析结果的启发[Spassiani 和 Sebastiani,J. Geophys. Res. 121, 903 (2016)10.1002/2015JB012398]。基于后一篇论文中针对真实目录获得的实验证据,我们从理论上推导出 Spassiani 和 Sebastiani 提出的触发地震震级的概率密度函数,并将其用于两个模拟目录的分析。为此,我们强加了一个基本条件:对所有母事件的震级进行平均,我们必须再次得到古登堡-里希特定律。这确保了当忽略过去的地震活动时,该定律在任何事件生成时的有效性。然后,我们在这里从理论上分析了具有相关震级的 ETAS 模型。特别是,我们使用概率生成函数和 Palm 理论的工具,以导出在小时间间隔内零事件的概率的近似值,并根据连续两次地震之间的事件间时间来解释结果,后者是评估地震危险的非常有用的随机变量。