Suppr超能文献

从具有可变位置不确定性的间歇轨迹估计扩散常数。

Estimation of the diffusion constant from intermittent trajectories with variable position uncertainties.

机构信息

Department of Physics and Astronomy, University of New Mexico, Mexico.

Department of Pathology, University of New Mexico, Mexico.

出版信息

Phys Rev E. 2016 Apr;93:042401. doi: 10.1103/PhysRevE.93.042401. Epub 2016 Apr 4.

Abstract

The movement of a particle described by Brownian motion is quantified by a single parameter, D, the diffusion constant. The estimation of D from a discrete sequence of noisy observations is a fundamental problem in biological single-particle tracking experiments since it can provide information on the environment and/or the state of the particle itself via the hydrodynamic radius. Here, we present a method to estimate D that takes into account several effects that occur in practice, important for the correct estimation of D, and that have hitherto not been combined together for an estimation of D. These effects are motion blur from the finite integration time of the camera, intermittent trajectories, and time-dependent localization uncertainty. Our estimation procedure, a maximum-likelihood estimation with an information-based confidence interval, follows directly from the likelihood expression for a discretely observed Brownian trajectory that explicitly includes these effects. We begin with the formulation of the likelihood expression and then present three methods to find the exact solution. Each method has its own advantages in either computational robustness, theoretical insight, or the estimation of hidden variables. The Fisher information for this likelihood distribution is calculated and analyzed to show that localization uncertainties impose a lower bound on the estimation of D. Confidence intervals are established and then used to evaluate our estimator on simulated data with experimentally relevant camera effects to demonstrate the benefit of incorporating variable localization errors.

摘要

布朗运动所描述的粒子运动由单个参数 D(扩散常数)来量化。从包含噪声的离散观测序列中估计 D 是生物单粒子追踪实验中的一个基本问题,因为它可以通过流体力学半径为环境和/或粒子本身的状态提供信息。在这里,我们提出了一种估计 D 的方法,该方法考虑了在实际中发生的几个效应,这些效应对于正确估计 D 很重要,但迄今为止尚未结合起来用于 D 的估计。这些效应是相机有限积分时间引起的运动模糊、间歇性轨迹和随时间变化的定位不确定性。我们的估计过程是一种基于最大似然估计的信息置信区间估计,它直接来源于对显式包含这些效应的离散观测布朗轨迹的似然表达式。我们首先给出似然表达式的公式,然后提出三种方法来找到精确解。每种方法在计算稳健性、理论洞察力或隐藏变量的估计方面都有其自身的优势。计算并分析了该似然分布的 Fisher 信息,以表明定位不确定性对 D 的估计施加了下限。建立了置信区间,然后在具有实验相关相机效应的模拟数据上评估我们的估计器,以证明包含可变定位误差的益处。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验