Teraguchi Shunsuke, Kumagai Yutaro
Tohoku Medical Megabank Organization, Tohoku University, 2-1 Seiryo-machi, Aoba-ku, Sendai, 980-8573, Japan.
Quantitative Immunology Research Unit, Immunology Frontier Research Center, Osaka University, 3-1 Yamada-oka, Suita, Osaka, 565-0871, Japan.
BMC Syst Biol. 2018 Apr 11;12(Suppl 1):15. doi: 10.1186/s12918-018-0526-5.
Time course measurement of single molecules on a cell surface provides detailed information about the dynamics of the molecules that would otherwise be inaccessible. To extract the quantitative information, single particle tracking (SPT) is typically performed. However, trajectories extracted by SPT inevitably have linking errors when the diffusion speed of single molecules is high compared to the scale of the particle density.
To circumvent this problem, we develop an algorithm to estimate diffusion constants without relying on SPT. The proposed algorithm is based on a probabilistic model of the distance to the nearest point in subsequent frames. This probabilistic model generalizes the model of single particle Brownian motion under an isolated environment into the one surrounded by indistinguishable multiple particles, with a mean field approximation.
We demonstrate that the proposed algorithm provides reasonable estimation of diffusion constants, even when other methods suffer due to high particle density or inhomogeneous particle distribution. In addition, our algorithm can be used for visualization of time course data from single molecular measurements.
The proposed algorithm based on the probabilistic model of indistinguishable Brownian particles provide accurate estimation of diffusion constants even in the regime where the traditional SPT methods underestimate them due to linking errors.
对细胞表面单个分子进行时间进程测量可提供有关这些分子动态的详细信息,而这些信息用其他方法则难以获取。为了提取定量信息,通常会进行单粒子追踪(SPT)。然而,当单个分子的扩散速度相对于粒子密度尺度较高时,通过SPT提取的轨迹不可避免地会出现链接误差。
为了解决这个问题,我们开发了一种不依赖SPT来估计扩散常数的算法。所提出的算法基于后续帧中到最近点距离的概率模型。这个概率模型通过平均场近似,将孤立环境下单粒子布朗运动模型推广到由不可区分的多个粒子包围的环境中。
我们证明,即使在其他方法因高粒子密度或不均匀粒子分布而受影响时,所提出的算法也能对扩散常数进行合理估计。此外,我们的算法可用于单分子测量的时间进程数据可视化。
基于不可区分布朗粒子概率模型所提出的算法,即使在传统SPT方法因链接误差而低估扩散常数的情况下,也能提供准确的估计。