Department of Mathematics, CSUN, Los Angeles, California 91330-8313, USA, and Department of Biomathematics, UCLA, Los Angeles, California 90095-1766, USA.
Departments of Biomathematics and Mathematics, UCLA, Los Angeles, California 90095-1766, USA.
Phys Rev E. 2016 Apr;93:043112. doi: 10.1103/PhysRevE.93.043112. Epub 2016 Apr 13.
We derive a three-dimensional theory of self-propelled particle swarming in a viscous fluid environment. Our model predicts emergent collective behavior that depends critically on fluid opacity, mechanism of self-propulsion, and type of particle-particle interaction. In "clear fluids" swimmers have full knowledge of their surroundings and can adjust their velocities with respect to the lab frame, while in "opaque fluids" they control their velocities only in relation to the local fluid flow. We also show that "social" interactions that affect only a particle's propensity to swim towards or away from neighbors induces a flow field that is qualitatively different from the long-ranged flow fields generated by direct "physical" interactions. The latter can be short-ranged but lead to much longer-ranged fluid-mediated hydrodynamic forces, effectively amplifying the range over which particles interact. These different fluid flows conspire to profoundly affect swarm morphology, kinetically stabilizing or destabilizing swarm configurations that would arise in the absence of fluid. Depending upon the overall interaction potential, the mechanism of swimming ( e.g., pushers or pullers), and the degree of fluid opaqueness, we discover a number of new collective three-dimensional patterns including flocks with prolate or oblate shapes, recirculating pelotonlike structures, and jetlike fluid flows that entrain particles mediating their escape from the center of mill-like structures. Our results reveal how the interplay among general physical elements influence fluid-mediated interactions and the self-organization, mobility, and stability of new three-dimensional swarms and suggest how they might be used to kinetically control their collective behavior.
我们推导出一个在粘性流体环境中自主游动粒子群的三维理论。我们的模型预测了突发的集体行为,这取决于流体不透明度、自推进机制和粒子间相互作用的类型。在“透明流体”中,游泳者对周围环境有充分的了解,可以根据实验室框架调整自己的速度,而在“不透明流体”中,它们只能根据局部流体流动来控制自己的速度。我们还表明,仅影响粒子向或远离邻居游动倾向的“社交”相互作用会引起流场,与直接“物理”相互作用产生的长程流场在性质上不同。后者可以是短程的,但会产生更长程的流体介导的流体动力,有效地扩大了粒子相互作用的范围。这些不同的流体流动共同作用,深刻地影响了群体形态,在没有流体的情况下,动力学稳定或破坏了群体结构。根据整体相互作用势、游泳机制(例如,推进器或拉动器)和流体不透明度的程度,我们发现了许多新的集体三维模式,包括具有扁长形状或扁圆形状的群体、再循环的pelotonlike 结构以及夹带颗粒并将其从中脱离出来的射流状流体流动 mill-like 结构的中心。我们的结果揭示了一般物理元素之间的相互作用如何影响流体介导的相互作用以及新的三维群体的自组织、迁移性和稳定性,并暗示了如何利用它们来动态控制它们的集体行为。