Suppr超能文献

在运动悬浮液中相干结构和大规模流动的出现。

Emergence of coherent structures and large-scale flows in motile suspensions.

机构信息

Department of Mechanical Science and Engineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA.

出版信息

J R Soc Interface. 2012 Mar 7;9(68):571-85. doi: 10.1098/rsif.2011.0355. Epub 2011 Aug 24.

Abstract

The emergence of coherent structures, large-scale flows and correlated dynamics in suspensions of motile particles such as swimming micro-organisms or artificial microswimmers is studied using direct particle simulations. A detailed model is proposed for a slender rod-like particle that propels itself in a viscous fluid by exerting a prescribed tangential stress on its surface, and a method is devised for the efficient calculation of hydrodynamic interactions in large-scale suspensions of such particles using slender-body theory and a smooth particle-mesh Ewald algorithm. Simulations are performed with periodic boundary conditions for various system sizes and suspension volume fractions, and demonstrate a transition to large-scale correlated motions in suspensions of rear-actuated swimmers, or Pushers, above a critical volume fraction or system size. This transition, which is not observed in suspensions of head-actuated swimmers, or Pullers, is seen most clearly in particle velocity and passive tracer statistics. These observations are consistent with predictions from our previous mean-field kinetic theory, one of which states that instabilities will arise in uniform isotropic suspensions of Pushers when the product of the linear system size with the suspension volume fraction exceeds a given threshold. We also find that the collective dynamics of Pushers result in giant number fluctuations, local alignment of swimmers and strongly mixing flows. Suspensions of Pullers, which evince no large-scale dynamics, nonetheless display interesting deviations from the random isotropic state.

摘要

采用直接粒子模拟研究了游动颗粒(如游泳微生物或人工微泳者)悬浮液中相干结构、大规模流动和相关动力学的出现。为一种细长的杆状颗粒提出了详细的模型,该颗粒通过在其表面施加规定的切向应力来推动自身在粘性流体中运动,并设计了一种使用细长体理论和光滑粒子网格 Ewald 算法在这种颗粒的大规模悬浮液中高效计算流体动力学相互作用的方法。模拟在各种系统尺寸和悬浮液体积分数下采用周期性边界条件进行,并在临界体积分数或系统尺寸以上的后驱游动者(或推进器)悬浮液中证明了向大规模相关运动的转变,而在前驱游动者(或拉拔器)悬浮液中则没有观察到这种转变。这种转变在颗粒速度和被动示踪剂统计中最为明显。这些观察结果与我们之前的平均场动理论的预测一致,其中之一表明,当线性系统尺寸与悬浮液体积分数的乘积超过给定阈值时,推进器的均匀各向同性悬浮液中将出现不稳定性。我们还发现,推进器的集体动力学导致了巨大的数量波动、泳者的局部对齐和强烈的混合流动。尽管没有大规模动力学的拉拔器悬浮液仍表现出与随机各向同性状态的有趣偏离。

相似文献

2
Extensional rheology of active suspensions.活性悬浮液的拉伸流变学
Phys Rev E Stat Nonlin Soft Matter Phys. 2010 May;81(5 Pt 2):056307. doi: 10.1103/PhysRevE.81.056307. Epub 2010 May 10.
3
Collective chemotactic dynamics in the presence of self-generated fluid flows.在存在自身产生的流体流动情况下的集体趋化动力学。
Phys Rev E Stat Nonlin Soft Matter Phys. 2012 Oct;86(4 Pt 1):040902. doi: 10.1103/PhysRevE.86.040902. Epub 2012 Oct 22.
5
Mesoscale simulations of hydrodynamic squirmer interactions.流体动力游动体相互作用的中尺度模拟。
Phys Rev E Stat Nonlin Soft Matter Phys. 2010 Oct;82(4 Pt 1):041921. doi: 10.1103/PhysRevE.82.041921. Epub 2010 Oct 26.
7
Collective Motion of Microorganisms in a Viscoelastic Fluid.粘弹性流体中微生物的集体运动
Phys Rev Lett. 2016 Sep 9;117(11):118001. doi: 10.1103/PhysRevLett.117.118001. Epub 2016 Sep 7.
8
Dynamics of ellipsoidal tracers in swimming algal suspensions.在游动藻类悬浮液中椭圆形示踪粒子的动力学。
Phys Rev E. 2016 Oct;94(4-1):042601. doi: 10.1103/PhysRevE.94.042601. Epub 2016 Oct 10.

引用本文的文献

3
Gyrotactic cluster formation of bottom-heavy squirmers.底部重质扭动生物的旋进群集形成。
Eur Phys J E Soft Matter. 2022 Mar 18;45(3):26. doi: 10.1140/epje/s10189-022-00183-5.
7
Extensile motor activity drives coherent motions in a model of interphase chromatin.伸展运动驱动着间期染色质模型中的相干运动。
Proc Natl Acad Sci U S A. 2018 Nov 6;115(45):11442-11447. doi: 10.1073/pnas.1807073115. Epub 2018 Oct 22.
8
Effect of Cytoskeleton Elasticity on Amoeboid Swimming.细胞骨架弹性对阿米巴样运动的影响。
Biophys J. 2018 Oct 2;115(7):1316-1329. doi: 10.1016/j.bpj.2018.08.005. Epub 2018 Aug 16.
10
Generalized Swift-Hohenberg models for dense active suspensions.用于稠密活性悬浮液的广义Swift-Hohenberg模型。
Eur Phys J E Soft Matter. 2016 Oct;39(10):97. doi: 10.1140/epje/i2016-16097-2. Epub 2016 Oct 25.

本文引用的文献

1
Dynamics of confined suspensions of swimming particles.受限游动粒子悬浮液的动力学
J Phys Condens Matter. 2009 May 20;21(20):204107. doi: 10.1088/0953-8984/21/20/204107. Epub 2009 Apr 21.
2
Dynamics of swimming bacteria: transition to directional order at high concentration.游动细菌的动力学:在高浓度下向定向有序转变
Phys Rev E Stat Nonlin Soft Matter Phys. 2011 Jun;83(6 Pt 1):061907. doi: 10.1103/PhysRevE.83.061907. Epub 2011 Jun 14.
3
Enhancement of biomixing by swimming algal cells in two-dimensional films.二维膜中游泳藻类细胞的生物混合增强。
Proc Natl Acad Sci U S A. 2011 Jun 28;108(26):10391-5. doi: 10.1073/pnas.1107046108. Epub 2011 Jun 9.
5
Fluid velocity fluctuations in a suspension of swimming protists.悬浮游动原生生物中流体速度脉动。
Phys Rev Lett. 2010 Oct 29;105(18):188101. doi: 10.1103/PhysRevLett.105.188101. Epub 2010 Oct 26.
6
Fluid particle diffusion in a semidilute suspension of model micro-organisms.模型微生物半稀悬浮液中的流体颗粒扩散。
Phys Rev E Stat Nonlin Soft Matter Phys. 2010 Aug;82(2 Pt 1):021408. doi: 10.1103/PhysRevE.82.021408. Epub 2010 Aug 27.
7
Locomotion of electrocatalytic nanomotors due to reaction induced charge autoelectrophoresis.基于反应诱导电荷自电泳的电催化纳米马达的运动
Phys Rev E Stat Nonlin Soft Matter Phys. 2010 Jun;81(6 Pt 2):065302. doi: 10.1103/PhysRevE.81.065302. Epub 2010 Jun 23.
8
Fluctuations and pattern formation in self-propelled particles.自驱动粒子中的涨落与图案形成。
Phys Rev E Stat Nonlin Soft Matter Phys. 2010 Jun;81(6 Pt 1):061916. doi: 10.1103/PhysRevE.81.061916. Epub 2010 Jun 16.
9
Stability of active suspensions.活性悬浮液的稳定性。
Phys Rev E Stat Nonlin Soft Matter Phys. 2010 Apr;81(4 Pt 2):046311. doi: 10.1103/PhysRevE.81.046311. Epub 2010 Apr 20.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验