Department of Physics and Astronomy, University of North Carolina, Chapel Hill, North Carolina 27599-3255, USA.
Phys Rev E. 2016 Apr;93:043301. doi: 10.1103/PhysRevE.93.043301. Epub 2016 Apr 1.
We put forward a simpler and improved variation of a recently proposed method to overcome the signal-to-noise problem found in Monte Carlo calculations of the entanglement entropy of interacting fermions. The present method takes advantage of the approximate log-normal distributions that characterize the signal-to-noise properties of other approaches. In addition, we show that a simple rewriting of the formalism allows circumvention of the inversion of the restricted one-body density matrix in the calculation of the nth Rényi entanglement entropy for n>2. We test our technique by implementing it in combination with the hybrid Monte Carlo algorithm and calculating the n=2,3,4,⋯,10 Rényi entropies of the one-dimensional attractive Hubbard model. We use that data to extrapolate to the von Neumann (n=1) and n→∞ cases.
我们提出了一种更为简单和改进的方法变体,用于克服最近提出的方法在计算相互作用费米子的纠缠熵的蒙特卡罗计算中发现的信号噪声问题。本方法利用了其他方法中信号噪声特性的近似对数正态分布。此外,我们还表明,通过对形式主义的简单改写,可以避免在计算 n>2 时对受限单粒子密度矩阵进行求逆。我们通过将其与混合蒙特卡罗算法相结合并计算一维吸引哈伯德模型的 n=2、3、4、⋯、10 个 Renyi 纠缠熵来测试我们的技术。我们使用该数据外推到 von Neumann(n=1)和 n→∞ 情况。