Suppr超能文献

γ-氨基丁酸A型(GABAA)受体回路机制与乙醚麻醉诱导的意识丧失有关。

GABAA circuit mechanisms are associated with ether anesthesia-induced unconsciousness.

作者信息

Akeju Oluwaseun, Hamilos Allison E, Song Andrew H, Pavone Kara J, Purdon Patrick L, Brown Emery N

机构信息

Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Boston, MA, USA; Harvard Medical School, Boston, MA, USA.

Harvard Medical School, Boston, MA, USA; Harvard-Massachusetts Institute of Technology Division of Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, MA, USA; Institute for Medical Engineering and Sciences, Massachusetts Institute of Technology, Cambridge, MA, USA.

出版信息

Clin Neurophysiol. 2016 Jun;127(6):2472-81. doi: 10.1016/j.clinph.2016.02.012. Epub 2016 Feb 27.

Abstract

OBJECTIVE

An emerging paradigm for understanding how anesthetics induce altered arousal is relating receptor targeting in specific neural circuits to electroencephalogram (EEG) activity. Enhanced gamma amino-butyric acid A (GABAA) inhibitory post-synaptic currents (IPSCs) manifest with large-amplitude slow (0.1-1Hz) and frontally coherent alpha (8-12Hz) EEG oscillations during general anesthesia. Therefore, we investigated the EEG signatures of modern day derivatives of ether (MDDE) anesthesia to assess the extent to which we could obtain insights into MDDE anesthetic mechanisms.

METHODS

We retrospectively studied cases from our database in which patients received isoflurane anesthesia vs. isoflurane/ketamine anesthesia (n=10 each) or desflurane anesthesia vs. desflurane/ketamine anesthesia (n=9 each). We analyzed the EEG recordings with spectral power and coherence methods.

RESULTS

Similar to known GABAA circuit level mechanisms, we found that MDDE anesthesia induced large amplitude slow and frontally coherent alpha oscillations. Additionally, MDDE anesthesia also induced frontally coherent theta (4-8Hz) oscillations. Reduction of GABAergic IPSCs with ketamine resulted in beta/gamma (13-40Hz) oscillations, and significantly reduced MDDE anesthesia-induced slow, theta and alpha oscillation power.

CONCLUSIONS

Large amplitude slow oscillations and coherent alpha and theta oscillations are moderated by ketamine during MDDE anesthesia.

SIGNIFICANCE

These observations are consistent with the notion that GABAA circuit-level mechanisms are associated with MDDE anesthesia-induced unconsciousness.

摘要

目的

一种用于理解麻醉剂如何诱导唤醒改变的新兴范式是将特定神经回路中的受体靶向与脑电图(EEG)活动联系起来。在全身麻醉期间,增强的γ-氨基丁酸A(GABAA)抑制性突触后电流(IPSCs)表现为大振幅慢波(0.1 - 1Hz)以及额叶相干α波(8 - 12Hz)脑电振荡。因此,我们研究了醚类现代衍生物(MDDE)麻醉的脑电图特征,以评估我们能在多大程度上深入了解MDDE的麻醉机制。

方法

我们回顾性研究了数据库中的病例,其中患者接受异氟烷麻醉与异氟烷/氯胺酮麻醉(各10例)或地氟烷麻醉与地氟烷/氯胺酮麻醉(各9例)。我们用频谱功率和相干方法分析脑电图记录。

结果

与已知的GABAA回路水平机制相似,我们发现MDDE麻醉诱导出大振幅慢波和额叶相干α波振荡。此外,MDDE麻醉还诱导出额叶相干θ波(4 - 8Hz)振荡。氯胺酮降低GABA能IPSCs导致β/γ波(13 - 40Hz)振荡,并显著降低MDDE麻醉诱导的慢波、θ波和α波振荡功率。

结论

在MDDE麻醉期间,氯胺酮可调节大振幅慢波振荡以及相干α波和θ波振荡。

意义

这些观察结果与GABAA回路水平机制与MDDE麻醉诱导的无意识状态相关这一观点一致。

相似文献

1
GABAA circuit mechanisms are associated with ether anesthesia-induced unconsciousness.
Clin Neurophysiol. 2016 Jun;127(6):2472-81. doi: 10.1016/j.clinph.2016.02.012. Epub 2016 Feb 27.
2
Electroencephalogram signatures of ketamine anesthesia-induced unconsciousness.
Clin Neurophysiol. 2016 Jun;127(6):2414-22. doi: 10.1016/j.clinph.2016.03.005. Epub 2016 Mar 16.
4
Volatile anesthetics enhance flash-induced gamma oscillations in rat visual cortex.
Anesthesiology. 2005 May;102(5):937-47. doi: 10.1097/00000542-200505000-00012.
5
Age-dependent coupling characteristics of bilateral frontal EEG during desflurane anesthesia.
Physiol Meas. 2024 May 21;45(5). doi: 10.1088/1361-6579/ad46e0.
8
Signatures of Thalamocortical Alpha Oscillations and Synchronization With Increased Anesthetic Depths Under Isoflurane.
Front Pharmacol. 2022 Jun 3;13:887981. doi: 10.3389/fphar.2022.887981. eCollection 2022.
9
Effects of anesthesia on the response to sleep deprivation.
Sleep. 2010 Dec;33(12):1659-67. doi: 10.1093/sleep/33.12.1659.

引用本文的文献

2
Anesthesia-induced electroencephalogram oscillations and perioperative outcomes in older adults undergoing cardiac surgery.
J Clin Anesth. 2025 Mar;102:111770. doi: 10.1016/j.jclinane.2025.111770. Epub 2025 Feb 7.
3
Heart rate variability analysis for the prediction of pre-arousal during propofol-remifentanil general anaesthesia: A feasibility study.
PLoS One. 2024 Oct 31;19(10):e0310627. doi: 10.1371/journal.pone.0310627. eCollection 2024.
4
Propofol modulates neural dynamics of thalamo-cortical system associated with anesthetic levels in rats.
Cogn Neurodyn. 2023 Dec;17(6):1541-1559. doi: 10.1007/s11571-022-09912-0. Epub 2022 Nov 22.
5
Modulatory dynamics mark the transition between anesthetic states of unconsciousness.
Proc Natl Acad Sci U S A. 2023 Jul 25;120(30):e2300058120. doi: 10.1073/pnas.2300058120. Epub 2023 Jul 19.
6
Facilitation of Behavioral and Cortical Emergence from Isoflurane Anesthesia by GABAergic Neurons in Basal Forebrain.
J Neurosci. 2023 Apr 19;43(16):2907-2920. doi: 10.1523/JNEUROSCI.0628-22.2023. Epub 2023 Mar 3.
7
Intraoperative electroencephalographic marker of preoperative frailty: A prospective cohort study.
J Clin Anesth. 2023 Jun;86:111069. doi: 10.1016/j.jclinane.2023.111069. Epub 2023 Feb 2.
8
Biophysical Model: A Promising Method in the Study of the Mechanism of Propofol: A Narrative Review.
Comput Intell Neurosci. 2022 May 17;2022:8202869. doi: 10.1155/2022/8202869. eCollection 2022.
9
Ketamine induces EEG oscillations that may aid anesthetic state but not dissociation monitoring.
Clin Neurophysiol. 2021 Dec;132(12):3010-3018. doi: 10.1016/j.clinph.2021.08.021. Epub 2021 Oct 8.

本文引用的文献

1
Clinical Electroencephalography for Anesthesiologists: Part I: Background and Basic Signatures.
Anesthesiology. 2015 Oct;123(4):937-60. doi: 10.1097/ALN.0000000000000841.
2
Age-dependency of sevoflurane-induced electroencephalogram dynamics in children.
Br J Anaesth. 2015 Jul;115 Suppl 1(Suppl 1):i66-i76. doi: 10.1093/bja/aev114.
4
Nitrous oxide-induced slow and delta oscillations.
Clin Neurophysiol. 2016 Jan;127(1):556-564. doi: 10.1016/j.clinph.2015.06.001. Epub 2015 Jun 10.
6
Effects of sevoflurane and propofol on frontal electroencephalogram power and coherence.
Anesthesiology. 2014 Nov;121(5):990-8. doi: 10.1097/ALN.0000000000000436.
7
The thalamocortical network as a single slow wave-generating unit.
Curr Opin Neurobiol. 2015 Apr;31:72-80. doi: 10.1016/j.conb.2014.09.001. Epub 2014 Sep 16.
9
Thalamus and cortex: inseparable partners in shaping sleep slow waves?
J Neurosci. 2014 Aug 27;34(35):11517-8. doi: 10.1523/JNEUROSCI.2226-14.2014.
10
Electroencephalographic effects of ketamine on power, cross-frequency coupling, and connectivity in the alpha bandwidth.
Front Syst Neurosci. 2014 Jul 1;8:114. doi: 10.3389/fnsys.2014.00114. eCollection 2014.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验