Suppr超能文献

从减数分裂到有丝分裂——精子中心体决定非洲爪蟾受精后纺锤体组装的动力学。

From meiosis to mitosis - the sperm centrosome defines the kinetics of spindle assembly after fertilization in Xenopus.

作者信息

Cavazza Tommaso, Peset Isabel, Vernos Isabelle

机构信息

Cell and Developmental Biology Programme, Centre for Genomic Regulation (CRG), Barcelona Institute of Science and Technology, Doctor Aiguader, 88 Barcelona 08003, Spain Universitat Pompeu Fabra (UPF), Doctor Aiguader 88, Barcelona 08003, Spain.

Cell and Developmental Biology Programme, Centre for Genomic Regulation (CRG), Barcelona Institute of Science and Technology, Doctor Aiguader, 88 Barcelona 08003, Spain Universitat Pompeu Fabra (UPF), Doctor Aiguader 88, Barcelona 08003, Spain Institució Catalana de Recerca I Estudis Avançats (ICREA), Passeig de Lluis Companys 23, Barcelona 08010, Spain

出版信息

J Cell Sci. 2016 Jul 1;129(13):2538-47. doi: 10.1242/jcs.183624. Epub 2016 May 13.

Abstract

Bipolar spindle assembly in the vertebrate oocyte relies on a self-organization chromosome-dependent pathway. Upon fertilization, the male gamete provides a centrosome, and the first and subsequent embryonic divisions occur in the presence of duplicated centrosomes that act as dominant microtubule organizing centres (MTOCs). The transition from meiosis to embryonic mitosis involves a necessary adaptation to integrate the dominant chromosome-dependent pathway with the centrosomes to form the bipolar spindle. Here, we took advantage of the Xenopus laevis egg extract system to mimic in vitro the assembly of the first embryonic spindle and investigate the respective contributions of the centrosome and the chromosome-dependent pathway to the kinetics of the spindle bipolarization. We found that centrosomes control the transition from the meiotic to the mitotic spindle assembly mechanism. By defining the kinetics of spindle bipolarization, the centrosomes ensure their own positioning to each spindle pole and thereby their essential correct inheritance to the two first daughter cells of the embryo for the development of a healthy organism.

摘要

脊椎动物卵母细胞中的双极纺锤体组装依赖于一种自组织的染色体依赖性途径。受精后,雄配子提供一个中心体,第一次及随后的胚胎分裂在存在复制的中心体的情况下发生,这些中心体作为主要的微管组织中心(MTOC)。从减数分裂到胚胎有丝分裂的转变涉及到一种必要的适应过程,即将主要的染色体依赖性途径与中心体整合以形成双极纺锤体。在这里,我们利用非洲爪蟾卵提取物系统在体外模拟第一个胚胎纺锤体的组装,并研究中心体和染色体依赖性途径对纺锤体双极化动力学的各自贡献。我们发现中心体控制着从减数分裂纺锤体组装机制到有丝分裂纺锤体组装机制的转变。通过定义纺锤体双极化的动力学,中心体确保它们自身定位到每个纺锤极,从而确保它们对于胚胎的两个最初子细胞的正确遗传,这对于健康生物体的发育至关重要。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验