Suppr超能文献

基于回归系数的评分系统应被用于为风险指数赋权。

Regression coefficient-based scoring system should be used to assign weights to the risk index.

机构信息

Department of Surgery, University of Texas Medical Branch, 300 University Blvd, Galveston, TX 77555, USA.

Department of Pharmacoepidemiology, Merck, 351 N Sumneytown Pike, North Wales, PA 19454, USA.

出版信息

J Clin Epidemiol. 2016 Nov;79:22-28. doi: 10.1016/j.jclinepi.2016.03.031. Epub 2016 May 13.

Abstract

OBJECTIVE

Some previously developed risk scores contained a mathematical error in their construction: risk ratios were added to derive weights to construct a summary risk score. This study demonstrates the mathematical error and derived different versions of the Charlson comorbidity score (CCS) using regression coefficient-based and risk ratio-based scoring systems to further demonstrate the effects of incorrect weighting on performance in predicting mortality.

STUDY DESIGN AND SETTING

This retrospective cohort study included elderly people from the Clinical Practice Research Datalink. Cox proportional hazards regression models were constructed for time to 1-year mortality. Weights were assigned to 17 comorbidities using regression coefficient-based and risk ratio-based scoring systems. Different versions of CCS were compared using Akaike information criteria (AIC), McFadden's adjusted R, and net reclassification improvement (NRI).

RESULTS

Regression coefficient-based models (Beta, Beta10/integer, Beta/Schneeweiss, Beta/Sullivan) had lower AIC and higher R compared to risk ratio-based models (HR/Charlson, HR/Johnson). Regression coefficient-based CCS reclassified more number of people into the correct strata (NRI range, 9.02-10.04) compared to risk ratio-based CCS (NRI range, 8.14-8.22).

CONCLUSION

Previously developed risk scores contained an error in their construction adding ratios instead of multiplying them. Furthermore, as demonstrated here, adding ratios fail to even work adequately from a practical standpoint. CCS derived using regression coefficients performed slightly better than in fitting the data compared to risk ratio-based scoring systems. Researchers should use a regression coefficient-based scoring system to develop a risk index, which is theoretically correct.

摘要

目的

一些先前开发的风险评分在构建过程中存在数学错误:风险比被添加到推导权重以构建综合风险评分中。本研究展示了数学错误,并使用基于回归系数和风险比的评分系统得出了不同版本的 Charlson 合并症评分(CCS),以进一步展示错误加权对预测死亡率的性能的影响。

研究设计和设置

这项回顾性队列研究包括来自临床实践研究数据链接的老年人。使用 Cox 比例风险回归模型构建了 1 年死亡率的时间模型。使用基于回归系数和风险比的评分系统为 17 种合并症分配权重。使用赤池信息量准则(AIC)、麦克法登调整后的 R 和净重新分类改善(NRI)比较不同版本的 CCS。

结果

与风险比模型(HR/Charlson、HR/Johnson)相比,基于回归系数的模型(Beta、Beta10/integer、Beta/Schneeweiss、Beta/Sullivan)的 AIC 更低,R 更高。基于回归系数的 CCS 将更多的人重新分类到正确的层次(NRI 范围为 9.02-10.04),而基于风险比的 CCS 的 NRI 范围为 8.14-8.22。

结论

先前开发的风险评分在构建过程中存在错误,即添加比值而不是相乘。此外,正如这里所展示的,从实际角度来看,添加比值甚至不能正常工作。与基于风险比的评分系统相比,使用回归系数得出的 CCS 在拟合数据方面表现略好。研究人员应使用基于回归系数的评分系统来开发风险指数,这在理论上是正确的。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验