Department of Civil and Environmental Engineering, University of Illinois at Urbana-Champaign , Urbana, Illinois 61801, United States.
Department of Civil and Environmental Engineering, Colorado School of Mines , Golden, Colorado 80401, United States.
Environ Sci Technol. 2016 Jun 7;50(11):5874-81. doi: 10.1021/acs.est.6b00886. Epub 2016 May 24.
Rapid reduction of aqueous ClO4(-) to Cl(-) by H2 has been realized by a heterogeneous Re(hoz)2-Pd/C catalyst integrating Re(O)(hoz)2Cl complex (hoz = oxazolinyl-phenolato bidentate ligand) and Pd nanoparticles on carbon support, but ClOx(-) intermediates formed during reactions with concentrated ClO4(-) promote irreversible Re complex decomposition and catalyst deactivation. The original catalyst design mimics the microbial ClO4(-) reductase, which integrates Mo(MGD)2 complex (MGD = molybdopterin guanine dinucleotide) for oxygen atom transfer (OAT). Perchlorate-reducing microorganisms employ a separate enzyme, chlorite dismutase, to prevent accumulation of the destructive ClO2(-) intermediate. The structural intricacy of MGD ligand and the two-enzyme mechanism for microbial ClO4(-) reduction inspired us to improve catalyst stability by rationally tuning Re ligand structure and adding a ClOx(-) scavenger. Two new Re complexes, Re(O)(htz)2Cl and Re(O)(hoz)(htz)Cl (htz = thiazolinyl-phenolato bidentate ligand), significantly mitigate Re complex decomposition by slightly lowering the OAT activity when immobilized in Pd/C. Further stability enhancement is then obtained by switching the nanoparticles from Pd to Rh, which exhibits high reactivity with ClOx(-) intermediates and thus prevents their deactivating reaction with the Re complex. Compared to Re(hoz)2-Pd/C, the new Re(hoz)(htz)-Rh/C catalyst exhibits similar ClO4(-) reduction activity but superior stability, evidenced by a decrease of Re leaching from 37% to 0.25% and stability of surface Re speciation following the treatment of a concentrated "challenge" solution containing 1000 ppm of ClO4(-). This work demonstrates the pivotal roles of coordination chemistry control and tuning of individual catalyst components for achieving both high activity and stability in environmental catalyst applications.
通过一种非均相的 Re(hoz)2-Pd/C 催化剂,实现了水相 ClO4(-)与 H2 的快速还原,该催化剂整合了 Re(O)(hoz)2Cl 配合物(hoz = 噁唑啉基-苯酚双齿配体)和负载在碳上的 Pd 纳米粒子,但在与高浓度 ClO4(-)反应过程中形成的 ClOx(-)中间体促进了不可逆的 Re 配合物分解和催化剂失活。原始催化剂设计模拟了微生物 ClO4(-)还原酶,它整合了 Mo(MGD)2 配合物(MGD = 钼喋呤鸟嘌呤二核苷酸)用于氧原子转移(OAT)。过氯酸盐还原微生物使用一种单独的酶,亚氯酸盐歧化酶,以防止破坏性 ClO2(-)中间体的积累。MGD 配体的结构复杂性和微生物 ClO4(-)还原的双酶机制激发了我们通过合理调整 Re 配体结构和添加 ClOx(-)清除剂来提高催化剂稳定性。两种新的 Re 配合物,Re(O)(htz)2Cl 和 Re(O)(hoz)(htz)Cl(htz = 噻唑啉基-苯酚双齿配体),当固定在 Pd/C 上时,通过略微降低 OAT 活性,显著减轻了 Re 配合物的分解。然后,通过将纳米粒子从 Pd 切换到 Rh,进一步提高了稳定性,Rh 对 ClOx(-)中间体具有高反应活性,从而防止了它们与 Re 配合物的失活反应。与 Re(hoz)2-Pd/C 相比,新的 Re(hoz)(htz)-Rh/C 催化剂表现出相似的 ClO4(-)还原活性,但稳定性更高,表现在 Re 浸出从 37%降至 0.25%,以及在处理含有 1000ppm ClO4(-)的“挑战”溶液后,表面 Re 形态的稳定性提高。这项工作证明了配位化学控制和单个催化剂组分的调谐在实现环境催化剂应用中的高活性和稳定性方面的关键作用。