Amino T, Arakawa K, Mori H
Advanced Technology Research Laboratories, Nippon Steel &Sumitomo Metal Corporation, 1-8 Fuso-Cho, Amagasaki, Hyogo 660-0891, Japan.
Department of Materials Science, Faculty of Science and Engineering, Shimane University, 1060 Nishikawatsu, Matsue 690-8504, Japan.
Sci Rep. 2016 May 17;6:26099. doi: 10.1038/srep26099.
The dynamic behaviour of atomic-size disarrangements of atoms-point defects (self-interstitial atoms (SIAs) and vacancies)-often governs the macroscopic properties of crystalline materials. However, the dynamics of SIAs have not been fully uncovered because of their rapid migration. Using a combination of high-voltage transmission electron microscopy and exhaustive kinetic Monte Carlo simulations, we determine the dynamics of the rapidly migrating SIAs from the formation process of the nanoscale SIA clusters in tungsten as a typical body-centred cubic (BCC) structure metal under the constant-rate production of both types of point defects with high-energy electron irradiation, which must reflect the dynamics of individual SIAs. We reveal that the migration dimension of SIAs is not three-dimensional (3D) but one-dimensional (1D). This result overturns the long-standing and well-accepted view of SIAs in BCC metals and supports recent results obtained by ab-initio simulations. The SIA dynamics clarified here will be one of the key factors to accurately predict the lifetimes of nuclear fission and fusion materials.
原子尺度的原子无序排列——点缺陷(自间隙原子(SIAs)和空位)的动态行为,常常决定着晶体材料的宏观性质。然而,由于自间隙原子迁移速度很快,其动力学尚未被完全揭示。我们结合高压透射电子显微镜和详尽的动力学蒙特卡罗模拟,在高能电子辐照以恒定速率产生这两种点缺陷的情况下,从钨(一种典型的体心立方(BCC)结构金属)中纳米尺度自间隙原子团簇的形成过程来确定快速迁移的自间隙原子的动力学,这必然反映了单个自间隙原子的动力学。我们发现,自间隙原子的迁移维度不是三维(3D)而是一维(1D)。这一结果颠覆了长期以来人们对体心立方金属中自间隙原子的普遍认知,并支持了最近从头算模拟得到的结果。这里阐明的自间隙原子动力学将是准确预测核裂变和聚变材料寿命的关键因素之一。