Suppr超能文献

构建具有多个最小支持度的关联分类器。

Building an associative classifier with multiple minimum supports.

作者信息

Hu Li-Yu, Hu Ya-Han, Tsai Chih-Fong, Wang Jian-Shian, Huang Min-Wei

机构信息

Department of Psychiatry, Kaohsiung Veterans General Hospital, Kaohsiung, Taiwan, ROC.

Department of Information Management, National Chung Cheng University, Chiayi, 62102 Taiwan, ROC.

出版信息

Springerplus. 2016 Apr 26;5:528. doi: 10.1186/s40064-016-2153-1. eCollection 2016.

Abstract

Classification is one of the most important technologies used in data mining. Researchers have recently proposed several classification techniques based on the concept of association rules (also known as CBA-based methods). Experimental evaluations on these studies show that in average the CBA-based approaches can yield higher accuracy than some of conventional classification methods. However, conventional CBA-based methods adopt a single threshold of minimum support for all items, resulting in the rare item problem. In other words, the classification rules will only contain frequent items if minimum support (minsup) is set as high or any combinations of items are discovered as frequent if minsup is set as low. To solve this problem, this paper proposes a novel CBA-based method called MMSCBA, which considers the concept of multiple minimum supports (MMSs). Based on MMSs, different classification rules appear in the corresponding minsups. Several experiments were conducted with six real-world datasets selected from the UCI Machine Learning Repository. The results show that MMSCBA achieves higher accuracy than conventional CBA methods, especially when the dataset contains rare items.

摘要

分类是数据挖掘中最重要的技术之一。研究人员最近基于关联规则的概念提出了几种分类技术(也称为基于CBA的方法)。对这些研究的实验评估表明,平均而言,基于CBA的方法比一些传统分类方法能产生更高的准确率。然而,传统的基于CBA的方法对所有项目采用单一的最小支持度阈值,从而导致稀有项目问题。换句话说,如果将最小支持度(minsup)设置得较高,分类规则将只包含频繁项目;如果将minsup设置得较低,任何项目组合都将被发现为频繁项目。为了解决这个问题,本文提出了一种新的基于CBA的方法,称为MMSCBA,它考虑了多个最小支持度(MMS)的概念。基于MMS,不同的分类规则出现在相应的最小支持度中。使用从UCI机器学习库中选择的六个真实世界数据集进行了几项实验。结果表明,MMSCBA比传统的CBA方法具有更高的准确率,特别是当数据集包含稀有项目时。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/62fc/4844591/d74afaa97b46/40064_2016_2153_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验