Subbulakshmi C V, Deepa S N
Department of EEE, Anna University Regional Centre, Coimbatore, Coimbatore 641 047, India.
ScientificWorldJournal. 2015;2015:418060. doi: 10.1155/2015/418060. Epub 2015 Sep 30.
Medical data classification is a prime data mining problem being discussed about for a decade that has attracted several researchers around the world. Most classifiers are designed so as to learn from the data itself using a training process, because complete expert knowledge to determine classifier parameters is impracticable. This paper proposes a hybrid methodology based on machine learning paradigm. This paradigm integrates the successful exploration mechanism called self-regulated learning capability of the particle swarm optimization (PSO) algorithm with the extreme learning machine (ELM) classifier. As a recent off-line learning method, ELM is a single-hidden layer feedforward neural network (FFNN), proved to be an excellent classifier with large number of hidden layer neurons. In this research, PSO is used to determine the optimum set of parameters for the ELM, thus reducing the number of hidden layer neurons, and it further improves the network generalization performance. The proposed method is experimented on five benchmarked datasets of the UCI Machine Learning Repository for handling medical dataset classification. Simulation results show that the proposed approach is able to achieve good generalization performance, compared to the results of other classifiers.
医学数据分类是一个已经被讨论了十年的主要数据挖掘问题,吸引了世界各地的众多研究人员。大多数分类器的设计是为了通过训练过程从数据本身进行学习,因为依靠完整的专家知识来确定分类器参数是不切实际的。本文提出了一种基于机器学习范式的混合方法。该范式将被称为粒子群优化(PSO)算法的自调节学习能力这种成功的探索机制与极限学习机(ELM)分类器相结合。作为一种近期的离线学习方法,ELM是一个单隐藏层前馈神经网络(FFNN),被证明是具有大量隐藏层神经元的优秀分类器。在本研究中,PSO用于确定ELM的最优参数集,从而减少隐藏层神经元的数量,并进一步提高网络的泛化性能。所提出的方法在UCI机器学习库的五个基准数据集上进行实验,以处理医学数据集分类。仿真结果表明,与其他分类器的结果相比,所提出的方法能够实现良好的泛化性能。