Jin Cong, Jin Shu-Wei
School of Computer, Central China Normal University, Wuhan 430079, People's Republic of China.
Département de Physique, École Normale Supérieure, 24, rue Lhomond 75231 Paris Cedex 5, France.
IET Syst Biol. 2016 Jun;10(3):107-15. doi: 10.1049/iet-syb.2015.0064.
A number of different gene selection approaches based on gene expression profiles (GEP) have been developed for tumour classification. A gene selection approach selects the most informative genes from the whole gene space, which is an important process for tumour classification using GEP. This study presents an improved swarm intelligent optimisation algorithm to select genes for maintaining the diversity of the population. The most essential characteristic of the proposed approach is that it can automatically determine the number of the selected genes. On the basis of the gene selection, the authors construct a variety of the tumour classifiers, including the ensemble classifiers. Four gene datasets are used to evaluate the performance of the proposed approach. The experimental results confirm that the proposed classifiers for tumour classification are indeed effective.
为了进行肿瘤分类,人们已经开发了许多基于基因表达谱(GEP)的不同基因选择方法。基因选择方法从整个基因空间中选择最具信息性的基因,这是使用GEP进行肿瘤分类的一个重要过程。本研究提出了一种改进的群体智能优化算法来选择基因,以保持种群的多样性。该方法最本质的特点是它可以自动确定所选基因的数量。在基因选择的基础上,作者构建了多种肿瘤分类器,包括集成分类器。使用四个基因数据集来评估所提方法的性能。实验结果证实,所提的肿瘤分类器确实有效。