School of Computing, Kalasalingam Academy of Research and Education, Krishnankoil, Virudhunagar, India.
School of Electronics & Electrical Technology, Kalasalingam Academy of Research and Education, Krishnankoil, Virudhunagar, India.
J Med Syst. 2019 Jun 17;43(8):235. doi: 10.1007/s10916-019-1372-8.
Cancer is a deadly disease which requires a very complex and costly treatment. Microarray data classification plays an important role in cancer treatment. An efficient gene selection technique to select the more promising genes is necessary for cancer classification. Here, we propose a Two-stage MI-GA Gene Selection algorithm for selecting informative genes in cancer data classification. In the first stage, Mutual Information based gene selection is applied which selects only the genes that have high information related to the cancer. The genes which have high mutual information value are given as input to the second stage. The Genetic Algorithm based gene selection is applied in the second stage to identify and select the optimal set of genes required for accurate classification. For classification, Support Vector Machine (SVM) is used. The proposed MI-GA gene selection approach is applied to Colon, Lung and Ovarian cancer datasets and the results show that the proposed gene selection approach results in higher classification accuracy compared to the existing methods.
癌症是一种致命的疾病,需要非常复杂和昂贵的治疗。微阵列数据分析分类在癌症治疗中起着重要作用。为了进行癌症分类,有必要选择一种有效的基因选择技术来选择更有前途的基因。在这里,我们提出了一种两阶段 MI-GA 基因选择算法,用于选择癌症数据分类中的信息基因。在第一阶段,应用基于互信息的基因选择,仅选择与癌症高度相关的基因。将具有高互信息值的基因作为输入提供给第二阶段。在第二阶段应用基于遗传算法的基因选择,以识别和选择准确分类所需的最佳基因集。对于分类,使用支持向量机(SVM)。将提出的 MI-GA 基因选择方法应用于结肠、肺和卵巢癌数据集,结果表明,与现有方法相比,所提出的基因选择方法可实现更高的分类准确性。