Suppr超能文献

用于净化砷(III)污染水的高效人工矿化途径——钙砷锌矿法。

Efficient artificial mineralization route to decontaminate Arsenic(III) polluted water - the Tooeleite Way.

作者信息

Malakar Arindam, Das Bidisa, Islam Samirul, Meneghini Carlo, De Giudici Giovanni, Merlini Marco, Kolen'ko Yury V, Iadecola Antonella, Aquilanti Giuliana, Acharya Somobrata, Ray Sugata

机构信息

Department of Materials Science, Indian Association for the Cultivation of Science, Jadavpur, Kolkata 700032, India.

Centre for Advanced Materials, Indian Association for the Cultivation of Science, Jadavpur, Kolkata 700032, India.

出版信息

Sci Rep. 2016 May 18;6:26031. doi: 10.1038/srep26031.

Abstract

Increasing exposure to arsenic (As) contaminated ground water is a great threat to humanity. Suitable technology for As immobilization and removal from water, especially for As(III) than As(V), is not available yet. However, it is known that As(III) is more toxic than As(V) and most groundwater aquifers, particularly the Gangetic basin in India, is alarmingly contaminated with it. In search of a viable solution here, we took a cue from the natural mineralization of Tooeleite, a mineral containing Fe(III) and As(III)ions, grown under acidic condition, in presence of SO4(2-) ions. Complying to this natural process, we could grow and separate Tooeleite-like templates from Fe(III) and As(III) containing water at overall circumneutral pH and in absence of SO4(2-) ions by using highly polar Zn-only ends of wurtzite ZnS nanorods as insoluble nano-acidic-surfaces. The central idea here is to exploit these insoluble nano-acidic-surfaces (called as INAS in the manuscript) as nucleation centres for Tooeleite growth while keeping the overall pH of the aqueous media neutral. Therefore, we propose a novel method of artificial mineralization of As(III) by mimicking a natural process at nanoscale.

摘要

日益增加的对受砷污染地下水的接触对人类构成了巨大威胁。目前还没有适用于固定和去除水中砷的技术,特别是对于三价砷(As(III))而言,比五价砷(As(V))更难去除。然而,已知三价砷比五价砷毒性更大,而且大多数地下水含水层,尤其是印度的恒河盆地,被其污染的程度令人担忧。为了寻找可行的解决方案,我们从酸性条件下、在硫酸根离子(SO4(2-))存在的情况下生长的含三价铁(Fe(III))和三价砷(As(III))离子的矿物——图埃勒矿(Tooeleite)的自然矿化过程中获得了灵感。遵循这一自然过程,我们可以通过使用纤锌矿型硫化锌(ZnS)纳米棒仅含锌的高度极性末端作为不溶性纳米酸性表面,在总体接近中性的pH值且不存在硫酸根离子(SO4(2-))的情况下,从含三价铁(Fe(III))和三价砷(As(III))的水中生长并分离出类似图埃勒矿的模板。这里的核心思想是利用这些不溶性纳米酸性表面(在手稿中称为INAS)作为图埃勒矿生长的成核中心,同时保持水介质的总体pH值为中性。因此,我们提出了一种通过在纳米尺度上模拟自然过程来人工矿化三价砷(As(III))的新方法。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d9f2/4870689/89ffb05dc808/srep26031-f1.jpg

相似文献

2
Structural substitution for SO group in tooeleite crystal by As(V) and As(III) oxoanions and the environmental implications.
Chemosphere. 2018 Dec;213:305-313. doi: 10.1016/j.chemosphere.2018.09.040. Epub 2018 Sep 11.
3
Arsenic(III) biotransformation to tooeleite associated with the oxidation of Fe(II) via Acidithiobacillus ferrooxidans.
Chemosphere. 2020 Jun;248:126080. doi: 10.1016/j.chemosphere.2020.126080. Epub 2020 Feb 1.
4
Spectroscopic characterization and solubility investigation on the effects of As(V) on mineral structure tooeleite (Fe₆(AsO₃)₂SO₄(OH)₂·H₂O).
Spectrochim Acta A Mol Biomol Spectrosc. 2015 Jan 5;134:428-33. doi: 10.1016/j.saa.2014.06.111. Epub 2014 Jun 25.
5
Formation of tooeleite and the role of direct removal of As(III) from high-arsenic acid wastewater.
J Hazard Mater. 2016 Dec 15;320:620-627. doi: 10.1016/j.jhazmat.2016.07.069. Epub 2016 Jul 29.
8
Geochemistry of redox-sensitive elements and sulfur isotopes in the high arsenic groundwater system of Datong Basin, China.
Sci Total Environ. 2009 Jun 1;407(12):3823-35. doi: 10.1016/j.scitotenv.2009.01.041. Epub 2009 Apr 2.
9
Removal of arsenic(III) from aqueous solutions using fresh and immobilized plant biomass.
Water Res. 2005 Aug;39(13):2815-26. doi: 10.1016/j.watres.2005.04.059.
10
Removal of arsenic from water: effect of calcium ions on As(III) removal in the KMnO(4)-Fe(II) process.
Water Res. 2009 Dec;43(20):5119-28. doi: 10.1016/j.watres.2008.12.054. Epub 2009 Jan 20.

引用本文的文献

本文引用的文献

1
Isolation, identification and arsenic-resistance of Acidithiobacillus ferrooxidans HX3 producing schwertmannite.
J Environ Sci (China). 2014 Jul;26(7):1463-70. doi: 10.1016/j.jes.2014.05.012. Epub 2014 Jun 16.
2
Arsenic in groundwater in six districts of West Bengal, India.
Environ Geochem Health. 1996 Mar;18(1):5-15. doi: 10.1007/BF01757214.
4
Groundwater arsenic contamination throughout China.
Science. 2013 Aug 23;341(6148):866-8. doi: 10.1126/science.1237484.
5
Understanding arsenate reaction kinetics with ferric hydroxides.
Environ Sci Technol. 2013 Aug 6;47(15):8342-7. doi: 10.1021/es4013382. Epub 2013 Jul 10.
6
Hierarchical superstructure of alkylamine-coated ZnS nanoparticle assemblies.
Phys Chem Chem Phys. 2011 Mar 21;13(11):4974-9. doi: 10.1039/c0cp00999g. Epub 2011 Feb 14.
7
Mechanisms of arsenic removal from water.
Environ Geochem Health. 2010 Aug;32(4):287-90. doi: 10.1007/s10653-010-9307-9. Epub 2010 Jun 18.
8
Spatial and temporal variations of groundwater arsenic in South and Southeast Asia.
Science. 2010 May 28;328(5982):1123-7. doi: 10.1126/science.1172974.
9
Status of groundwater arsenic contamination in the state of West Bengal, India: a 20-year study report.
Mol Nutr Food Res. 2009 May;53(5):542-51. doi: 10.1002/mnfr.200700517.
10
Preparation and evaluation of thiol-functionalized activated alumina for arsenite removal from water.
J Hazard Mater. 2009 Aug 15;167(1-3):1215-21. doi: 10.1016/j.jhazmat.2009.01.124. Epub 2009 Feb 7.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验