National Institute of Informatics, Hitotsubashi 2-1-2, Chiyoda-ku, Tokyo 101-8430, Japan.
E. L. Ginzton Laboratory, Stanford University, 348 Via Pueblo, Stanford, California 94305, USA.
Sci Rep. 2016 May 19;6:25655. doi: 10.1038/srep25655.
In a standard semiconductor laser, electrons and holes recombine via stimulated emission to emit coherent light, in a process that is far from thermal equilibrium. Exciton-polariton condensates-sharing the same basic device structure as a semiconductor laser, consisting of quantum wells coupled to a microcavity-have been investigated primarily at densities far below the Mott density for signatures of Bose-Einstein condensation. At high densities approaching the Mott density, exciton-polariton condensates are generally thought to revert to a standard semiconductor laser, with the loss of strong coupling. Here, we report the observation of a photoluminescence sideband at high densities that cannot be accounted for by conventional semiconductor lasing. This also differs from an upper-polariton peak by the observation of the excitation power dependence in the peak-energy separation. Our interpretation as a persistent coherent electron-hole-photon coupling captures several features of this sideband, although a complete understanding of the experimental data is lacking. A full understanding of the observations should lead to a development in non-equilibrium many-body physics.
在标准半导体激光中,电子和空穴通过受激辐射复合,以发射相干光,这一过程远非热平衡过程。激子极化激元凝聚体——与半导体激光具有相同的基本器件结构,由量子阱耦合到微腔组成——主要在远低于莫特密度的密度下进行研究,以寻找玻色-爱因斯坦凝聚的特征。在接近莫特密度的高密度下,激子极化激元凝聚体通常被认为会恢复为标准半导体激光,失去强耦合。在这里,我们报告了在高密度下观察到的光致发光边带,这不能用传统的半导体激光来解释。通过观察在峰值能量分离处的激发功率依赖性,这也与上极化激元峰不同。我们将其解释为持续的相干电子-空穴-光子耦合,这捕获了该边带的几个特征,尽管对实验数据缺乏完整的理解。对这些观测结果的全面理解应该会导致非平衡多体物理的发展。