Baker Stuart G, Bonetti Marco
Division of Cancer Prevention, National Cancer Institute, Bethesda, MD (SGB); Carlo F. Dondena Centre for Research on Social Dynamics and Public Policies and Bocconi University, Milan, Italy (MB)
Division of Cancer Prevention, National Cancer Institute, Bethesda, MD (SGB); Carlo F. Dondena Centre for Research on Social Dynamics and Public Policies and Bocconi University, Milan, Italy (MB).
J Natl Cancer Inst. 2016 May 18;108(9). doi: 10.1093/jnci/djw101. Print 2016 Sep.
The subpopulation treatment effect pattern plot (STEPP) is an appealing method for assessing the clinical impact of a predictive marker on patient outcomes and identifying a promising subgroup for further study. However, its original formulation lacked a decision analytic justification and applied only to a single marker.
We derive a decision-analytic result that motivates STEPP. We discuss the incorporation of multiple predictive markers into STEPP using risk difference, cadit, and responders-only benefit functions.
Applying STEPP to data from a breast cancer treatment trial with multiple markers, we found that none of the three benefit functions identified a promising subgroup for further study. Applying STEPP to hypothetical data from a trial with 100 markers, we found that all three benefit functions identified promising subgroups as evidenced by the large statistically significant treatment effect in these subgroups.
Because the method has desirable decision-analytic properties and yields an informative plot, it is worth applying to randomized trials on the chance there is a large treatment effect in a subgroup determined by the predictive markers.
亚组治疗效应模式图(STEPP)是一种用于评估预测标志物对患者预后的临床影响并识别有前景的亚组以进行进一步研究的有吸引力的方法。然而,其最初的形式缺乏决策分析依据,且仅适用于单个标志物。
我们得出了一个为STEPP提供理论依据的决策分析结果。我们讨论了使用风险差异、cadit和仅针对反应者的获益函数将多个预测标志物纳入STEPP的方法。
将STEPP应用于一项具有多个标志物的乳腺癌治疗试验的数据时,我们发现这三种获益函数均未识别出有前景的亚组以供进一步研究。将STEPP应用于一项有100个标志物的试验的假设数据时,我们发现所有三种获益函数均识别出了有前景的亚组,这些亚组中具有统计学意义的大治疗效应证明了这一点。
由于该方法具有理想的决策分析特性并能生成信息丰富的图表,因此值得应用于随机试验,因为有可能在由预测标志物确定的亚组中存在较大的治疗效应。