Brewer Philip B, Yoneyama Kaori, Filardo Fiona, Meyers Emma, Scaffidi Adrian, Frickey Tancred, Akiyama Kohki, Seto Yoshiya, Dun Elizabeth A, Cremer Julia E, Kerr Stephanie C, Waters Mark T, Flematti Gavin R, Mason Michael G, Weiller Georg, Yamaguchi Shinjiro, Nomura Takahito, Smith Steven M, Yoneyama Koichi, Beveridge Christine A
School of Biological Sciences, The University of Queensland, St. Lucia, QLD 4072, Australia;
Center for Bioscience Research and Education, Utsunomiya University, Utsunomiya 321-8505, Japan;
Proc Natl Acad Sci U S A. 2016 May 31;113(22):6301-6. doi: 10.1073/pnas.1601729113. Epub 2016 May 18.
Strigolactones are a group of plant compounds of diverse but related chemical structures. They have similar bioactivity across a broad range of plant species, act to optimize plant growth and development, and promote soil microbe interactions. Carlactone, a common precursor to strigolactones, is produced by conserved enzymes found in a number of diverse species. Versions of the MORE AXILLARY GROWTH1 (MAX1) cytochrome P450 from rice and Arabidopsis thaliana make specific subsets of strigolactones from carlactone. However, the diversity of natural strigolactones suggests that additional enzymes are involved and remain to be discovered. Here, we use an innovative method that has revealed a missing enzyme involved in strigolactone metabolism. By using a transcriptomics approach involving a range of treatments that modify strigolactone biosynthesis gene expression coupled with reverse genetics, we identified LATERAL BRANCHING OXIDOREDUCTASE (LBO), a gene encoding an oxidoreductase-like enzyme of the 2-oxoglutarate and Fe(II)-dependent dioxygenase superfamily. Arabidopsis lbo mutants exhibited increased shoot branching, but the lbo mutation did not enhance the max mutant phenotype. Grafting indicated that LBO is required for a graft-transmissible signal that, in turn, requires a product of MAX1. Mutant lbo backgrounds showed reduced responses to carlactone, the substrate of MAX1, and methyl carlactonoate (MeCLA), a product downstream of MAX1. Furthermore, lbo mutants contained increased amounts of these compounds, and the LBO protein specifically converts MeCLA to an unidentified strigolactone-like compound. Thus, LBO function may be important in the later steps of strigolactone biosynthesis to inhibit shoot branching in Arabidopsis and other seed plants.
独脚金内酯是一类化学结构多样但相关的植物化合物。它们在广泛的植物物种中具有相似的生物活性,作用是优化植物生长发育,并促进与土壤微生物的相互作用。独脚金内酯的常见前体——可立内酯,由多种不同物种中保守的酶产生。水稻和拟南芥中的多侧枝生长1(MAX1)细胞色素P450的不同变体可从可立内酯生成特定的独脚金内酯亚群。然而,天然独脚金内酯的多样性表明还涉及其他酶,有待发现。在这里,我们使用了一种创新方法,揭示了一种参与独脚金内酯代谢的缺失酶。通过转录组学方法,涉及一系列改变独脚金内酯生物合成基因表达的处理,并结合反向遗传学,我们鉴定出了侧枝氧化还原酶(LBO),这是一个编码属于2-氧代戊二酸和铁(II)依赖性双加氧酶超家族的氧化还原酶样酶的基因。拟南芥lbo突变体表现出地上部枝条增多,但lbo突变并未增强max突变体的表型。嫁接表明,LBO对于一种嫁接可传递信号是必需的,而该信号反过来又需要MAX1的产物。lbo突变体背景对MAX1的底物可立内酯和MAX1下游产物甲基可立内酯(MeCLA)的反应减弱。此外,lbo突变体中这些化合物的含量增加,并且LBO蛋白可将MeCLA特异性转化为一种未鉴定的独脚金内酯样化合物。因此,LBO功能在独脚金内酯生物合成的后期步骤中可能很重要,以抑制拟南芥和其他种子植物的地上部枝条生长。