Kucukyildirim Sibel, Long Hongan, Sung Way, Miller Samuel F, Doak Thomas G, Lynch Michael
Department of Biology, Indiana University, Bloomington, Indiana 47405 Department of Biology, Hacettepe University, Ankara, 06800 Turkey
Department of Biology, Indiana University, Bloomington, Indiana 47405.
G3 (Bethesda). 2016 Jul 7;6(7):2157-63. doi: 10.1534/g3.116.030130.
Mycobacterium smegmatis is a bacterium that is naturally devoid of known postreplicative DNA mismatch repair (MMR) homologs, mutS and mutL, providing an opportunity to investigate how the mutation rate and spectrum has evolved in the absence of a highly conserved primary repair pathway. Mutation accumulation experiments of M. smegmatis yielded a base-substitution mutation rate of 5.27 × 10(-10) per site per generation, or 0.0036 per genome per generation, which is surprisingly similar to the mutation rate in MMR-functional unicellular organisms. Transitions were found more frequently than transversions, with the A:T→G:C transition rate significantly higher than the G:C→A:T transition rate, opposite to what is observed in most studied bacteria. We also found that the transition-mutation rate of M. smegmatis is significantly lower than that of other naturally MMR-devoid or MMR-knockout organisms. Two possible candidates that could be responsible for maintaining high DNA fidelity in this MMR-deficient organism are the ancestral-like DNA polymerase DnaE1, which contains a highly efficient DNA proofreading histidinol phosphatase (PHP) domain, and/or the existence of a uracil-DNA glycosylase B (UdgB) homolog that might protect the GC-rich M. smegmatis genome against DNA damage arising from oxidation or deamination. Our results suggest that M. smegmatis has a noncanonical Dam (DNA adenine methylase) methylation system, with target motifs differing from those previously reported. The mutation features of M. smegmatis provide further evidence that genomes harbor alternative routes for improving replication fidelity, even in the absence of major repair pathways.
耻垢分枝杆菌是一种天然缺乏已知的复制后DNA错配修复(MMR)同源物MutS和MutL的细菌,这为研究在缺乏高度保守的主要修复途径的情况下突变率和突变谱是如何进化的提供了一个机会。耻垢分枝杆菌的突变积累实验得出每个位点每代的碱基替换突变率为5.27×10⁻¹⁰,或每个基因组每代0.0036,这与具有MMR功能的单细胞生物中的突变率惊人地相似。发现转换比颠换更频繁,其中A:T→G:C的转换率显著高于G:C→A:T的转换率,这与大多数研究的细菌中观察到的情况相反。我们还发现耻垢分枝杆菌的转换突变率显著低于其他天然缺乏MMR或敲除MMR的生物。在这种缺乏MMR的生物体中,可能负责维持高DNA保真度的两个可能候选者是含有高效DNA校对组氨醇磷酸酶(PHP)结构域的类祖先DNA聚合酶DnaE1,和/或可能保护富含GC的耻垢分枝杆菌基因组免受氧化或脱氨引起的DNA损伤的尿嘧啶-DNA糖基化酶B(UdgB)同源物的存在。我们的结果表明耻垢分枝杆菌具有非典型的Dam(DNA腺嘌呤甲基化酶)甲基化系统,其靶基序与先前报道的不同。耻垢分枝杆菌的突变特征提供了进一步的证据,表明即使在没有主要修复途径的情况下,基因组也存在提高复制保真度的替代途径。