Demarest Tyler G, Schuh Rosemary A, Waddell Jaylyn, McKenna Mary C, Fiskum Gary
Department of Anesthesiology and the Center for Shock, Trauma, and Anesthesiology Research (S.T.A.R.), University of Maryland School of Medicine, Baltimore, Maryland, USA.
Program in Neuroscience, University of Maryland School of Medicine, Baltimore, Maryland, USA.
J Neurochem. 2016 Jun;137(5):714-29. doi: 10.1111/jnc.13590. Epub 2016 May 6.
Increased male susceptibility to long-term cognitive deficits is well described in clinical and experimental studies of neonatal hypoxic-ischemic encephalopathy. While cell death signaling pathways are known to be sexually dimorphic, a sex-dependent pathophysiological mechanism preceding the majority of secondary cell death has yet to be described. Mitochondrial dysfunction contributes to cell death following cerebral hypoxic-ischemia (HI). Several lines of evidence suggest that there are sex differences in the mitochondrial metabolism of adult mammals. Therefore, this study tested the hypothesis that brain mitochondrial respiratory impairment and associated oxidative stress is more severe in males than females following HI. Maximal brain mitochondrial respiration during oxidative phosphorylation was two-fold more impaired in males following HI. The endogenous antioxidant glutathione was 30% higher in the brain of sham females compared to males. Females also exhibited increased glutathione peroxidase (GPx) activity following HI injury. Conversely, males displayed a reduction in mitochondrial GPx4 protein levels and mitochondrial GPx activity. Moreover, a 3-4-fold increase in oxidative protein carbonylation was observed in the cortex, perirhinal cortex, and hippocampus of injured males, but not females. These data provide the first evidence for sex-dependent mitochondrial respiratory dysfunction and oxidative damage, which may contribute to the relative male susceptibility to adverse long-term outcomes following HI. Lower basal GSH levels, lower post-hypoxic mitochondrial glutathione peroxidase (mtGPx) activity, and mitochondrial glutathione peroxidase 4 (mtGPx4) protein levels may contribute to the susceptibility of the male brain to oxidative damage and mitochondrial dysfunction following neonatal hypoxic-ischemia (HI). Treatment of male pups with acetyl-L-carnitine (ALCAR) protects against the loss of mtGPx activity, mtGPx4 protein, and increases in protein carbonylation after HI. These findings provide novel insight into the pathophysiology of sexually dimorphic outcomes following HI.
在新生儿缺氧缺血性脑病的临床和实验研究中,男性对长期认知缺陷的易感性增加已得到充分描述。虽然已知细胞死亡信号通路存在性别差异,但在大多数继发性细胞死亡之前的性别依赖性病理生理机制尚未得到描述。线粒体功能障碍导致脑缺氧缺血(HI)后的细胞死亡。有几条证据表明成年哺乳动物的线粒体代谢存在性别差异。因此,本研究检验了以下假设:HI后雄性动物的脑线粒体呼吸功能障碍和相关氧化应激比雌性更严重。HI后雄性动物氧化磷酸化过程中的最大脑线粒体呼吸功能受损程度是雌性的两倍。假手术雌性动物大脑中的内源性抗氧化剂谷胱甘肽比雄性高30%。HI损伤后雌性动物的谷胱甘肽过氧化物酶(GPx)活性也有所增加。相反,雄性动物的线粒体GPx4蛋白水平和线粒体GPx活性降低。此外,在受伤雄性动物的皮质、梨状皮质和海马体中观察到氧化蛋白羰基化增加了3 - 4倍,而雌性动物中未观察到。这些数据首次证明了性别依赖性线粒体呼吸功能障碍和氧化损伤,这可能导致雄性动物对HI后不良长期后果的相对易感性。较低的基础谷胱甘肽水平、缺氧后较低的线粒体谷胱甘肽过氧化物酶(mtGPx)活性和线粒体谷胱甘肽过氧化物酶4(mtGPx4)蛋白水平可能导致新生期缺氧缺血(HI)后雄性大脑对氧化损伤和线粒体功能障碍的易感性。用乙酰 - L - 肉碱(ALCAR)治疗雄性幼崽可防止HI后mtGPx活性、mtGPx4蛋白的丧失以及蛋白羰基化的增加。这些发现为HI后性别差异结果的病理生理学提供了新的见解。