Suppr超能文献

热感觉处理的现状与未来研究

Status of and Future Research on Thermosensory Processing.

作者信息

Mizunami Makoto, Nishino Hiroshi, Yokohari Fumio

机构信息

Faculty of Science, Hokkaido University Sapporo, Japan.

Research Institute for Electronic Science, Hokkaido University Sapporo, Japan.

出版信息

Front Physiol. 2016 Apr 25;7:150. doi: 10.3389/fphys.2016.00150. eCollection 2016.

Abstract

Thermosensation is critically important for survival of all animals. In the cockroach Periplaneta americana, thermoreceptor neurons on antennae and thermosensory interneurons in the antennal lobe have been characterized electrophysiologically, and recent studies using advanced transgenic technologies in the fruit fly Drosophila melanogaster have added much to the knowledge of these neurons, enabling us to discuss common principles of thermosensory processing systems in insects. Cockroaches and many other insects possess only one type of thermoreceptor neurons on antennae that are excited by cooling and inhibited by warming. In contrast, the antennae of fruit flies and other dipterans possess oppositely responding warm and cold receptor neurons. Despite differences in their thermoreceptive equipment, central processing of temperature information is much the same in flies and cockroaches. Axons of thermoreceptor neurons project to the margin of the antennal lobe and form glomeruli, from which cold, warm and cold-warm projection neurons originate, the last neurons being excited by both cooling and warming. Axons of antennal lobe thermosensory projection neurons of the antennal lobe terminate in three distinct areas of the protocerebrum, the mushroom body, lateral horn and posterior lateral protocerebrum, the last area also receiving termination of hygrosensory projection neurons. Such multiple thermosensory pathways may serve to control multiple forms of thermosensory behavior. Electrophysiological studies on cockroaches and transgenic approaches in flies are encouraged to complement each other for further elucidating general principles of thermosensory processing in the insect brain.

摘要

温度感觉对于所有动物的生存至关重要。在美洲大蠊中,触角上的温度感受器神经元和触角叶中的温度感觉中间神经元已通过电生理学进行了表征,最近在果蝇中使用先进的转基因技术进行的研究极大地丰富了我们对这些神经元的认识,使我们能够讨论昆虫温度感觉处理系统的共同原理。蟑螂和许多其他昆虫在触角上仅有一种温度感受器神经元,它们在冷却时被激活,在升温时被抑制。相比之下,果蝇和其他双翅目昆虫的触角拥有对温度变化反应相反的温觉和冷觉感受器神经元。尽管它们的温度感受装置存在差异,但果蝇和蟑螂对温度信息的中枢处理方式大致相同。温度感受器神经元的轴突投射到触角叶的边缘并形成神经小球,冷觉、温觉和冷温觉投射神经元由此发出,最后一种神经元在冷却和升温时均被激活。触角叶的触角叶温度感觉投射神经元的轴突终止于原脑的三个不同区域,即蘑菇体、侧角和原脑后外侧,最后一个区域也接收湿度感觉投射神经元的终止。这种多条温度感觉通路可能用于控制多种形式的温度感觉行为。鼓励对蟑螂进行电生理学研究以及对果蝇采用转基因方法,以相互补充,进一步阐明昆虫大脑中温度感觉处理的一般原理。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/27d0/4843090/81c299577c63/fphys-07-00150-g0001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验