Valenzuela Loreto M, Knight Doyle D, Kohn Joachim
Department of Chemical and Bioprocess Engineering, Research Center for Nanotechnology and Advanced Materials "CIEN-UC", Pontificia Universidad Católica de Chile, Vicuña Mackenna 2860, Macul, 7820436 Santiago, Chile.
Department of Mechanical and Aerospace Engineering, Rutgers, The State University of New Jersey, New Brunswick, NJ 08854-8087, USA.
Int J Biomater. 2016;2016:6273414. doi: 10.1155/2016/6273414. Epub 2016 Apr 21.
Prediction of the dynamic properties of water uptake across polymer libraries can accelerate polymer selection for a specific application. We first built semiempirical models using Artificial Neural Networks and all water uptake data, as individual input. These models give very good correlations (R (2) > 0.78 for test set) but very low accuracy on cross-validation sets (less than 19% of experimental points within experimental error). Instead, using consolidated parameters like equilibrium water uptake a good model is obtained (R (2) = 0.78 for test set), with accurate predictions for 50% of tested polymers. The semiempirical model was applied to the 56-polymer library of L-tyrosine-derived polyarylates, identifying groups of polymers that are likely to satisfy design criteria for water uptake. This research demonstrates that a surrogate modeling effort can reduce the number of polymers that must be synthesized and characterized to identify an appropriate polymer that meets certain performance criteria.
预测聚合物库中水分吸收的动态特性可以加速针对特定应用的聚合物选择。我们首先使用人工神经网络和所有水分吸收数据作为单独输入构建了半经验模型。这些模型具有很好的相关性(测试集的R (2) > 0.78),但在交叉验证集上的准确性非常低(实验误差范围内的实验点不到19%)。相反,使用平衡水分吸收等综合参数可得到一个良好的模型(测试集的R (2) = 0.78),对50%的测试聚合物有准确预测。该半经验模型应用于L-酪氨酸衍生的聚芳酯的56种聚合物库,识别出可能满足水分吸收设计标准的聚合物组。这项研究表明,替代建模工作可以减少为识别符合某些性能标准的合适聚合物而必须合成和表征的聚合物数量。