Suppr超能文献

聚合物的 Hildebrand 和 Hansen 溶解度参数的批判性评估。

Critical Assessment of the Hildebrand and Hansen Solubility Parameters for Polymers.

机构信息

School of Materials Science and Engineering , Georgia Institute of Technology , 771 Ferst Drive NW , Atlanta , Georgia 30332 , United States.

出版信息

J Chem Inf Model. 2019 Oct 28;59(10):4188-4194. doi: 10.1021/acs.jcim.9b00656. Epub 2019 Oct 10.

Abstract

Solubility parameter models are widely used to select suitable solvents/nonsolvents for polymers in a variety of processing and engineering applications. In this study, we focus on two well-established models, namely, the Hildebrand and Hansen solubility parameter models. Both models are built on the basis of the notion of "like dissolves like" and identify a liquid as a good solvent for a polymer if the solubility parameters of the liquid and the polymer are close to each other. Here we make a critical and quantitative assessment of the accuracy/utility of these two models by comparing their predictions against actual experimental data. Using a data set of 75 polymers, we find that the Hildebrand model displays a predictive accuracy of 60% for solvents and 76% for nonsolvents. The Hansen model leads to a similar performance; on the basis of a data set of 25 polymers for which Hansen parameters are available, we find that it has an accuracy of 67% for solvents and 76% for nonsolvents. The availability of the Hildebrand parameters for a large polymer data set makes it a widely applicable capability, as the Hildebrand parameter for a new polymer may be determined using this data set and machine learning methods as we have done before; the predicted Hildebrand parameter for a new polymer may then be used to determine suitable solvents and nonsolvents. Such predictions are difficult to make with the Hansen model, as the data set of Hansen parameters for polymers is rather small. Nevertheless, the Hildebrand approach must be used with caution. Our analysis shows that while the Hildebrand model has a predictive accuracy of 70-75% for nonpolar polymers, it performs rather poorly for polar polymers (with an accuracy of 57%). Going forward, determination of solvents and nonsolvents for polymers may benefit by developing classification models built directly on the basis of available experimental data sets rather than utilizing the solubility parameter approach, which is limited in versatility and accuracy.

摘要

溶解度参数模型广泛应用于各种加工和工程应用中选择聚合物的合适溶剂/非溶剂。在这项研究中,我们专注于两种成熟的模型,即 Hildebrand 和 Hansen 溶解度参数模型。这两种模型都是基于“相似相溶”的概念构建的,如果液体和聚合物的溶解度参数接近,那么液体就是聚合物的良溶剂。在这里,我们通过将这两种模型的预测结果与实际实验数据进行比较,对它们的准确性/实用性进行了批判性和定量评估。使用 75 种聚合物的数据集,我们发现 Hildebrand 模型对溶剂的预测准确率为 60%,对非溶剂的预测准确率为 76%。Hansen 模型的性能也类似;基于可用 Hansen 参数的 25 种聚合物数据集,我们发现它对溶剂的准确率为 67%,对非溶剂的准确率为 76%。Hildebrand 参数在大型聚合物数据集上的可用性使其具有广泛的适用性,因为可以使用该数据集和机器学习方法来确定新聚合物的 Hildebrand 参数,就像我们之前所做的那样;然后可以使用预测的新聚合物的 Hildebrand 参数来确定合适的溶剂和非溶剂。对于 Hansen 模型来说,这种预测是很难实现的,因为聚合物的 Hansen 参数数据集相对较小。然而,必须谨慎使用 Hildebrand 方法。我们的分析表明,虽然 Hildebrand 模型对非极性聚合物的预测准确率为 70-75%,但对极性聚合物的预测准确率却相当低(准确率为 57%)。未来,通过直接基于可用实验数据集而不是利用溶解度参数方法来确定聚合物的溶剂和非溶剂,可能会受益,因为溶解度参数方法在多功能性和准确性方面存在局限性。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验