Suppr超能文献

有氧深海沉积物中微生物获取能量的潜在机制

Potential Mechanisms for Microbial Energy Acquisition in Oxic Deep-Sea Sediments.

作者信息

Tully Benjamin J, Heidelberg John F

机构信息

Center for Dark Energy Biosphere Investigations, University of Southern California, Los Angeles, California, USA

Center for Dark Energy Biosphere Investigations, University of Southern California, Los Angeles, California, USA Department of Biological Sciences, University of Southern California, Los Angeles, California, USA.

出版信息

Appl Environ Microbiol. 2016 Jun 30;82(14):4232-43. doi: 10.1128/AEM.01023-16. Print 2016 Jul 15.

Abstract

UNLABELLED

The South Pacific Gyre (SPG) possesses the lowest rates of sedimentation, surface chlorophyll concentration, and primary productivity in the global oceans. As a direct result, deep-sea sediments are thin and contain small amounts of labile organic carbon. It was recently shown that the entire SPG sediment column is oxygenated and may be representative of up to a third of the global marine environment. To understand the microbial processes that contribute to the removal of the labile organic matter at the water-sediment interface, a sediment sample was collected and subjected to metagenomic sequencing and analyses. Analysis of nine partially reconstructed environmental genomes, which represent approximately one-third of the microbial community, revealed that the members of the SPG surface sediment microbial community are phylogenetically distinct from surface/upper-ocean organisms. These genomes represent a wide distribution of novel organisms, including deep-branching Alphaproteobacteria, two novel organisms within the Proteobacteria, and new members of the Nitrospirae, Nitrospinae, and candidate phylum NC10. These genomes contain evidence for microbially mediated metal (iron/manganese) oxidation and carbon fixation linked to nitrification. Additionally, despite hypothesized energy limitation, members of the SPG microbial community had motility and chemotaxis genes and possessed mechanisms for the degradation of high-molecular-weight organic matter. This study contributes to our understanding of the metabolic potential of microorganisms in deep-sea oligotrophic sediments and their impact on local carbon geochemistry.

IMPORTANCE

This research provides insight into the microbial metabolic potential of organisms inhabiting oxygenated deep-sea marine sediments. Current estimates suggest that these environments account for up to a third of the global marine sediment habitat. Nine novel deep-sea microbial genomes were reconstructed from a metagenomic data set and expand the limited number of environmental genomes from deep-sea sediment environments. This research provides phylogeny-linked insight into critical metabolisms, including carbon fixation associated with nitrification, which is assignable to members of the marine group 1 Thaumarchaeota, Nitrospinae, and Nitrospirae and neutrophilic metal (iron/manganese) oxidation assignable to a novel proteobacterium.

摘要

未标注

南太平洋环流(SPG)区域的沉积速率、表层叶绿素浓度和初级生产力在全球海洋中是最低的。其直接结果是,深海沉积物很薄,且含有少量不稳定有机碳。最近的研究表明,整个南太平洋环流区域的沉积物柱都处于有氧状态,可能代表了高达全球海洋环境三分之一的区域。为了解在水 - 沉积物界面处有助于去除不稳定有机物质的微生物过程,采集了一份沉积物样本并进行宏基因组测序和分析。对九个部分重建的环境基因组(约占微生物群落的三分之一)的分析表明,南太平洋环流区域表层沉积物微生物群落的成员在系统发育上与表层/上层海洋生物不同。这些基因组代表了广泛分布的新生物,包括深分支的α - 变形菌、变形菌门内的两种新生物,以及硝化螺旋菌门、硝化刺菌门和候选门NC10的新成员。这些基因组包含微生物介导的金属(铁/锰)氧化和与硝化作用相关的碳固定的证据。此外,尽管推测存在能量限制,但南太平洋环流区域微生物群落的成员具有运动和趋化基因,并拥有降解高分子量有机物质的机制。这项研究有助于我们了解深海贫营养沉积物中微生物的代谢潜力及其对当地碳地球化学的影响。

重要性

本研究深入了解了栖息在有氧深海海洋沉积物中的生物的微生物代谢潜力。目前的估计表明,这些环境占全球海洋沉积物栖息地的比例高达三分之一。从宏基因组数据集中重建了九个新的深海微生物基因组,扩展了来自深海沉积物环境的有限数量的环境基因组。这项研究提供了与系统发育相关的对关键代谢的见解,包括与硝化作用相关的碳固定(可归因于海洋第1组奇古菌、硝化刺菌门和硝化螺旋菌门的成员)以及可归因于一种新型变形菌的嗜中性金属(铁/锰)氧化。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0873/4959193/d9ba53296393/zam9991172600001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验