Suppr超能文献

体外进化实验中适应度景观和进化网络的计算分析。

Computational analysis of fitness landscapes and evolutionary networks from in vitro evolution experiments.

作者信息

Xulvi-Brunet Ramon, Campbell Gregory W, Rajamani Sudha, Jiménez José I, Chen Irene A

机构信息

Departamento de Física, Facultad de Ciencias, Escuela Politécnica Nacional, Quito, Ecuador; Department of Chemistry and Biochemistry, Program in Biomolecular Science and Engineering, University of California, Santa Barbara, USA.

Department of Chemistry and Biochemistry, Program in Biomolecular Science and Engineering, University of California, Santa Barbara, USA.

出版信息

Methods. 2016 Aug 15;106:86-96. doi: 10.1016/j.ymeth.2016.05.012. Epub 2016 May 19.

Abstract

In vitro selection experiments in biochemistry allow for the discovery of novel molecules capable of specific desired biochemical functions. However, this is not the only benefit we can obtain from such selection experiments. Since selection from a random library yields an unprecedented, and sometimes comprehensive, view of how a particular biochemical function is distributed across sequence space, selection experiments also provide data for creating and analyzing molecular fitness landscapes, which directly map function (phenotypes) to sequence information (genotypes). Given the importance of understanding the relationship between sequence and functional activity, reliable methods to build and analyze fitness landscapes are needed. Here, we present some statistical methods to extract this information from pools of RNA molecules. We also provide new computational tools to construct and study molecular fitness landscapes.

摘要

生物化学中的体外筛选实验有助于发现具有特定所需生化功能的新型分子。然而,这并非我们能从此类筛选实验中获得的唯一益处。由于从随机文库中进行筛选能以前所未有的、有时甚至是全面的视角展现特定生化功能在序列空间中的分布情况,筛选实验还为创建和分析分子适应度景观提供了数据,分子适应度景观可直接将功能(表型)映射到序列信息(基因型)。鉴于理解序列与功能活性之间关系的重要性,需要有可靠的方法来构建和分析适应度景观。在此,我们介绍一些从RNA分子库中提取此类信息的统计方法。我们还提供了用于构建和研究分子适应度景观的新计算工具。

相似文献

2
Visualizing fitness landscapes.可视化健身地形。
Evolution. 2011 Jun;65(6):1544-58. doi: 10.1111/j.1558-5646.2011.01236.x. Epub 2011 Mar 1.
3
Virus Evolution on Fitness Landscapes.病毒在适应度景观上的进化。
Curr Top Microbiol Immunol. 2023;439:1-94. doi: 10.1007/978-3-031-15640-3_1.
4
Comprehensive experimental fitness landscape and evolutionary network for small RNA.小 RNA 的综合实验适应性景观和进化网络。
Proc Natl Acad Sci U S A. 2013 Sep 10;110(37):14984-9. doi: 10.1073/pnas.1307604110. Epub 2013 Aug 26.
8
Fitness Landscapes and Evolution of Catalytic RNA.适应性景观与催化 RNA 的进化。
Annu Rev Biophys. 2024 Jul;53(1):109-125. doi: 10.1146/annurev-biophys-030822-025038.
10

本文引用的文献

1
A Faster Triphosphorylation Ribozyme.一种更快的三磷酸化核酶。
PLoS One. 2015 Nov 6;10(11):e0142559. doi: 10.1371/journal.pone.0142559. eCollection 2015.
6
Comprehensive experimental fitness landscape and evolutionary network for small RNA.小 RNA 的综合实验适应性景观和进化网络。
Proc Natl Acad Sci U S A. 2013 Sep 10;110(37):14984-9. doi: 10.1073/pnas.1307604110. Epub 2013 Aug 26.
10
Barcoding bias in high-throughput multiplex sequencing of miRNA.高通量多重 miRNA 测序中的条形码偏倚。
Genome Res. 2011 Sep;21(9):1506-11. doi: 10.1101/gr.121715.111. Epub 2011 Jul 12.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验