Suppr超能文献

山楂果(山楂属)的对流干燥:实验参数对干燥动力学、颜色、收缩和复水能力的影响。

Convective drying of hawthorn fruit (Crataegus spp.): Effect of experimental parameters on drying kinetics, color, shrinkage, and rehydration capacity.

机构信息

Department of Chemical Engineering, Atatürk University, 25240 Erzurum, Turkey.

Department of Chemical Engineering, Atatürk University, 25240 Erzurum, Turkey.

出版信息

Food Chem. 2016 Nov 1;210:577-84. doi: 10.1016/j.foodchem.2016.04.128. Epub 2016 Apr 29.

Abstract

Thin layer drying characteristics and physicochemical properties of hawthorn fruit (Crataegus spp.) were investigated using a convective dryer at air temperatures 50, 60 and 70°C and air velocities of 0.5, 0.9 and 1.3m/s. The drying process of hawthorn took place in the falling rate period, and the drying time decreased with increasing air temperature and velocity. The experimental data obtained during the drying process were fitted to eleven different mathematical models. The Midilli et al.'s model was found to be the best appropriate model for explaining the drying behavior of hawthorn fruit. Effective moisture diffusion coefficients (Deff) were calculated by Fick's diffusion model and their values varied from 2.34×10(-10)m(2)/s to 2.09×10(-9)m(2)/s. An Arrhenius-type equation was applied to determine the activation energies. While the shrinkage decreased, the rehydration ratio increased with increasing air temperature and air velocity.

摘要

采用鼓风干燥箱,在空气温度为 50、60 和 70°C,空气流速为 0.5、0.9 和 1.3m/s 的条件下,研究了山楂果实的薄层干燥特性和物理化学特性。山楂的干燥过程处于降速干燥阶段,随着空气温度和流速的增加,干燥时间缩短。在干燥过程中获得的实验数据拟合了十一个不同的数学模型。结果表明,梅迪利等人的模型最适合解释山楂果实的干燥行为。通过菲克扩散模型计算有效水分扩散系数(Deff),其值在 2.34×10(-10)m(2)/s 到 2.09×10(-9)m(2)/s 之间变化。采用阿仑尼乌斯型方程确定了活化能。随着空气温度和空气流速的增加,收缩率减小,复水比增大。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验