Sherrill D L, Swanson G D
Division of Respiratory Sciences, University of Arizona, College of Medicine, Tucson 85724.
Comput Biomed Res. 1989 Jun;22(3):270-81. doi: 10.1016/0010-4809(89)90006-2.
The precision of an interpretation of gas exchange records in progressive exercise is limited by the typical breath-to-breath variation in the data. Recently, two procedures have been proposed for minimizing the "noise" in the estimates of alveolar gas exchange time series data. One approach utilizes an estimate of pulmonary blood flow (Q) for smoothing purposes. The other approach utilizes an estimate of effective lung volume (V'L) for smoothing purposes. In this paper, we formulate the smoothing problem as a general linear model and demonstrate the concurrent estimates of both V'L and Q. Furthermore, we investigate the interaction between V'L and Q. Specifically, when a high value of lung volume is used (such as the subject's resting functional residual capacity) in the alveolar gas exchange algorithm, the estimate of Q is biased low and the result is a less effective smoothing of the data. In addition, we demonstrate how the Q estimate can be improved by utilizing more appropriate estimates of arterial carbon dioxide tension.
在渐进性运动中,气体交换记录解释的精度受到数据中典型的逐次呼吸变化的限制。最近,有人提出了两种方法来最小化肺泡气体交换时间序列数据估计中的“噪声”。一种方法利用肺血流量(Q)的估计值进行平滑处理。另一种方法利用有效肺容积(V'L)的估计值进行平滑处理。在本文中,我们将平滑问题表述为一个一般线性模型,并展示了V'L和Q的同时估计。此外,我们研究了V'L和Q之间的相互作用。具体而言,当在肺泡气体交换算法中使用高肺容积值(如受试者的静息功能残气量)时,Q的估计值会偏低,结果是对数据的平滑效果较差。此外,我们还展示了如何通过利用更合适的动脉二氧化碳分压估计值来改进Q的估计。