Suppr超能文献

使用基于荧光显微镜的生物传感技术对空气中的石棉纤维和潜在危险纳米材料进行快速现场检测。

Rapid on-site detection of airborne asbestos fibers and potentially hazardous nanomaterials using fluorescence microscopy-based biosensing.

作者信息

Kuroda Akio, Alexandrov Maxym, Nishimura Tomoki, Ishida Takenori

机构信息

Department of Molecular Biotechnology, Hiroshima University, Higashi-Hiroshima, Hiroshima, Japan.

出版信息

Biotechnol J. 2016 Jun;11(6):757-67. doi: 10.1002/biot.201500438. Epub 2016 May 24.

Abstract

A large number of peptides with binding affinity to various inorganic materials have been identified and used as linkers, catalysts, and building blocks in nanotechnology and nanobiotechnology. However, there have been few applications of material-binding peptides in the fluorescence microscopy-based biosensing (FM method) of environmental pollutants. A notable exception is the application of the FM method for the detection of asbestos, a dangerous industrial toxin that is still widely used in many developing countries. This review details the selection and isolation of asbestos-binding proteins and peptides with sufficient specificity to distinguish asbestos from a large variety of safer fibrous materials used as asbestos substitutes. High sensitivity to nanoscale asbestos fibers (30-35 nm in diameter) invisible under conventional phase contrast microscopy can be achieved. The FM method is the basis for developing an automated system for asbestos biosensing that can be used for on-site testing with a portable fluorescence microscope. In the future, the FM method could also become a useful tool for detecting other potentially hazardous nanomaterials in the environment.

摘要

大量对各种无机材料具有结合亲和力的肽已被鉴定出来,并在纳米技术和纳米生物技术中用作连接体、催化剂和构建模块。然而,材料结合肽在基于荧光显微镜的环境污染物生物传感(FM方法)中的应用却很少。一个显著的例外是FM方法在石棉检测中的应用,石棉是一种危险的工业毒素,在许多发展中国家仍被广泛使用。本综述详细介绍了具有足够特异性以将石棉与用作石棉替代品的多种更安全的纤维材料区分开来的石棉结合蛋白和肽的选择与分离。对于传统相差显微镜下不可见的纳米级石棉纤维(直径30 - 35纳米)可实现高灵敏度检测。FM方法是开发用于石棉生物传感的自动化系统的基础,该系统可通过便携式荧光显微镜用于现场检测。未来,FM方法也可能成为检测环境中其他潜在危险纳米材料的有用工具。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验