Suppr超能文献

木犀草素减轻甲基乙二醛诱导的成骨细胞MC3T3-E1细胞的细胞毒性。

Luteolin alleviates methylglyoxal-induced cytotoxicity in osteoblastic MC3T3-E1 cells.

作者信息

Suh Kwang Sik, Chon Suk, Choi Eun Mi

机构信息

Research Institute of Endocrinology, Kyung Hee University Hospital, 1, Hoegi-dong, Dongdaemun-gu, Seoul, 130-702, South Korea.

Department of Endocrinology and Metabolism, School of Medicine, Kyung Hee University, 1, Hoegi-dong, Dongdaemun-gu, Seoul, 130-701, South Korea.

出版信息

Cytotechnology. 2016 Dec;68(6):2539-2552. doi: 10.1007/s10616-016-9977-y. Epub 2016 May 24.

Abstract

Methylglyoxal (MG), a reactive sugar-derived metabolite, exerts harmful effects by inducing oxidative stress, which aggravates a series of diabetic complications, including osteoporosis. The present study was performed to examine the effects of luteolin, a dietary polyphenolic flavonoid, on MG-induced cytotoxicity in MC3T3-E1 osteoblastic cells. Pretreatment of MC3T3-E1 osteoblastic cells with luteolin prevented MG-induced cell death and production of tumor necrosis factor-alpha, intracellular reactive oxygen species, mitochondrial superoxide, and cardiolipin peroxidation. In addition, luteolin increased the levels of glutathione and nuclear factor erythroid 2-related factor 2 (Nrf2) and decreased the inhibition of heme oxygenase-1 activity by MG. Pretreatment with luteolin prior to MG exposure reduced MG-induced mitochondrial dysfunction and increased the peroxisome proliferator-activated receptor γ co-activator 1α (PGC-1α) and nitric oxide levels, suggesting that luteolin may induce mitochondrial biogenesis. Taken together, these observations indicated that luteolin has potential as a preventive agent against the development of diabetic osteopathy related to MG-induced oxidative stress in diabetes.

摘要

甲基乙二醛(MG)是一种由糖衍生的反应性代谢产物,通过诱导氧化应激发挥有害作用,而氧化应激会加重包括骨质疏松症在内的一系列糖尿病并发症。本研究旨在检测膳食多酚类黄酮木犀草素对MG诱导的MC3T3-E1成骨细胞毒性的影响。用木犀草素预处理MC3T3-E1成骨细胞可防止MG诱导的细胞死亡以及肿瘤坏死因子-α、细胞内活性氧、线粒体超氧化物和心磷脂过氧化的产生。此外,木犀草素提高了谷胱甘肽和核因子红细胞2相关因子2(Nrf2)的水平,并减少了MG对血红素加氧酶-1活性的抑制。在MG暴露之前用木犀草素预处理可减少MG诱导的线粒体功能障碍,并提高过氧化物酶体增殖物激活受体γ共激活因子1α(PGC-1α)和一氧化氮水平,这表明木犀草素可能诱导线粒体生物发生。综上所述,这些观察结果表明,木犀草素具有作为预防剂预防与糖尿病中MG诱导的氧化应激相关的糖尿病性骨病发展的潜力。

相似文献

1
Luteolin alleviates methylglyoxal-induced cytotoxicity in osteoblastic MC3T3-E1 cells.
Cytotechnology. 2016 Dec;68(6):2539-2552. doi: 10.1007/s10616-016-9977-y. Epub 2016 May 24.
5
Actein protects against methylglyoxal-induced oxidative damage in osteoblastic MC3T3-E1 cells.
J Sci Food Agric. 2017 Jan;97(1):207-214. doi: 10.1002/jsfa.7713. Epub 2016 Apr 15.
6
Inhibitory effect of paeoniflorin on methylglyoxal-mediated oxidative stress in osteoblastic MC3T3-E1 cells.
Phytomedicine. 2014 Sep 15;21(10):1170-7. doi: 10.1016/j.phymed.2014.05.008. Epub 2014 Jun 7.
7
Methylglyoxal induces oxidative stress and mitochondrial dysfunction in osteoblastic MC3T3-E1 cells.
Free Radic Res. 2014 Feb;48(2):206-17. doi: 10.3109/10715762.2013.859387. Epub 2013 Nov 18.
9
Spironolactone Attenuates Methylglyoxal-induced Cellular Dysfunction in MC3T3-E1 Osteoblastic Cells.
J Korean Med Sci. 2021 Oct 4;36(38):e265. doi: 10.3346/jkms.2021.36.e265.
10
Cytoprotective effects of xanthohumol against methylglyoxal-induced cytotoxicity in MC3T3-E1 osteoblastic cells.
J Appl Toxicol. 2018 Feb;38(2):180-192. doi: 10.1002/jat.3521. Epub 2017 Sep 20.

引用本文的文献

1
[FER-1 inhibits methylglyoxal-induced ferroptosis in mouse alveolar macrophages ].
Nan Fang Yi Ke Da Xue Xue Bao. 2024 Dec 20;44(12):2443-2448. doi: 10.12122/j.issn.1673-4254.2024.12.21.
2
Therapeutic Potential of Luteolin for Diabetes Mellitus and Its Complications.
Chin J Integr Med. 2025 Jun;31(6):566-576. doi: 10.1007/s11655-024-3917-z. Epub 2024 Sep 20.
4
The influence of uremic toxins on low bone turnover disease in chronic kidney disease.
Tzu Chi Med J. 2023 Dec 13;36(1):38-45. doi: 10.4103/tcmj.tcmj_212_23. eCollection 2024 Jan-Mar.
6
Nrf2-mediated therapeutic effects of dietary flavones in different diseases.
Front Pharmacol. 2023 Sep 12;14:1240433. doi: 10.3389/fphar.2023.1240433. eCollection 2023.
7
AR/PCC herb pair inhibits osteoblast pyroptosis to alleviate diabetes-related osteoporosis by activating Nrf2/Keap1 pathway.
J Cell Mol Med. 2023 Nov;27(22):3601-3613. doi: 10.1111/jcmm.17928. Epub 2023 Aug 24.
9
The Role of NRF2 in Bone Metabolism - Friend or Foe?
Front Endocrinol (Lausanne). 2022 Feb 23;13:813057. doi: 10.3389/fendo.2022.813057. eCollection 2022.
10
[Role of interaction between reactive oxygen species and ferroptosis pathway in methylglyoxal-induced injury in mouse embryonic osteoblasts].
Nan Fang Yi Ke Da Xue Xue Bao. 2022 Jan 20;42(1):108-115. doi: 10.12122/j.issn.1673-4254.2022.01.13.

本文引用的文献

1
Essential Structural Requirements and Additive Effects for Flavonoids to Scavenge Methylglyoxal.
J Agric Food Chem. 2014 Apr 9;62(14):3202-3210. doi: 10.1021/jf500204s. Epub 2014 Apr 1.
2
Effects of parathyroid hormone on bone mass, bone strength, and bone regeneration in male rats with type 2 diabetes mellitus.
Endocrinology. 2014 Apr;155(4):1197-206. doi: 10.1210/en.2013-1960. Epub 2014 Jan 27.
3
Methylglyoxal induces oxidative stress and mitochondrial dysfunction in osteoblastic MC3T3-E1 cells.
Free Radic Res. 2014 Feb;48(2):206-17. doi: 10.3109/10715762.2013.859387. Epub 2013 Nov 18.
5
Type 2 diabetes is associated with vertebral fractures in a sample of clinic- and hospital-based Latinos.
J Immigr Minor Health. 2014 Jun;16(3):440-9. doi: 10.1007/s10903-013-9833-5.
6
Differences in non-enzymatic glycation and collagen cross-links between human cortical and cancellous bone.
Osteoporos Int. 2013 Sep;24(9):2441-7. doi: 10.1007/s00198-013-2319-4. Epub 2013 Mar 8.
7
Keap1/Nrf2/ARE redox-sensitive signaling system as a pharmacological target.
Biochemistry (Mosc). 2013 Jan;78(1):19-36. doi: 10.1134/S0006297913010033.
8
Flavour chemistry of methylglyoxal and glyoxal.
Chem Soc Rev. 2012 Jun 7;41(11):4140-9. doi: 10.1039/c2cs35025d. Epub 2012 Apr 16.
10
Bone, sweet bone--osteoporotic fractures in diabetes mellitus.
Nat Rev Endocrinol. 2012 Jan 17;8(5):297-305. doi: 10.1038/nrendo.2011.233.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验