Casas María Isabel, Falcone-Ferreyra María Lorena, Jiang Nan, Mejía-Guerra María Katherine, Rodríguez Eduardo, Wilson Tyler, Engelmeier Jacob, Casati Paula, Grotewold Erich
Molecular, Cellular, and Developmental Biology Program, The Ohio State University, Columbus, Ohio 43210 Center for Applied Plant Sciences, The Ohio State University, Columbus, Ohio 43210.
Centro de Estudios Fotosintéticos y Bioquímicos, Universidad Nacional de Rosario, Santa Fe S2002LRK, Argentina.
Plant Cell. 2016 Jun;28(6):1297-309. doi: 10.1105/tpc.16.00003. Epub 2016 May 24.
The century-old maize (Zea mays) salmon silks mutation has been linked to the absence of maysin. Maysin is a C-glycosyl flavone that, when present in silks, confers natural resistance to the maize earworm (Helicoverpa zea), which is one of the most damaging pests of maize in America. Previous genetic analyses predicted Pericarp Color1 (P1; R2R3-MYB transcription factor) to be epistatic to the sm mutation. Subsequent studies identified two loci as being capable of conferring salmon silks phenotypes, salmon silks1 (sm1) and sm2 Benefitting from available sm1 and sm2 mapping information and from knowledge of the genes regulated by P1, we describe here the molecular identification of the Sm1 and Sm2 gene products. Sm2 encodes a rhamnosyl transferase (UGT91L1) that uses isoorientin and UDP-rhamnose as substrates and converts them to rhamnosylisoorientin. Sm1 encodes a multidomain UDP-rhamnose synthase (RHS1) that converts UDP-glucose into UDP-l-rhamnose. Here, we demonstrate that RHS1 shows unexpected substrate plasticity in converting the glucose moiety in rhamnosylisoorientin to 4-keto-6-deoxy glucose, resulting in maysin. Both Sm1 and Sm2 are direct targets of P1, as demonstrated by chromatin immunoprecipitation experiments. The molecular characterization of Sm1 and Sm2 described here completes the maysin biosynthetic pathway, providing powerful tools for engineering tolerance to maize earworm in maize and other plants.
具有百年历史的玉米(Zea mays)鲑鱼色花丝突变与没食子酸的缺失有关。没食子酸是一种C-糖基黄酮,当存在于花丝中时,可赋予对玉米穗虫(Helicoverpa zea)的天然抗性,玉米穗虫是美国玉米最具破坏性的害虫之一。先前的遗传分析预测果皮颜色1(P1;R2R3-MYB转录因子)对sm突变具有上位性。随后的研究确定了两个位点能够赋予鲑鱼色花丝表型,即鲑鱼色花丝1(sm1)和sm2。受益于现有的sm1和sm2定位信息以及对由P1调控的基因的了解,我们在此描述了Sm1和Sm2基因产物的分子鉴定。Sm2编码一种鼠李糖基转移酶(UGT91L1),它以异荭草苷和UDP-鼠李糖为底物,并将它们转化为鼠李糖基异荭草苷。Sm1编码一种多结构域UDP-鼠李糖合酶(RHS1),它将UDP-葡萄糖转化为UDP-L-鼠李糖。在此,我们证明RHS1在将鼠李糖基异荭草苷中的葡萄糖部分转化为4-酮-6-脱氧葡萄糖从而产生没食子酸方面表现出意想不到的底物可塑性。染色质免疫沉淀实验表明,Sm1和Sm2都是P1的直接靶点。本文所述的Sm1和Sm2的分子特征完善了没食子酸生物合成途径,为培育玉米和其他植物对玉米穗虫的耐受性提供了有力工具。