Suppr超能文献

基于知识的睡眠脑电图分析方法——一项可行性研究。

Knowledge-based approach to sleep EEG analysis--a feasibility study.

作者信息

Jansen B H, Dawant B M

出版信息

IEEE Trans Biomed Eng. 1989 May;36(5):510-8. doi: 10.1109/10.24252.

Abstract

A knowledge-based approach to automated sleep EEG (electroencephalogram) analysis is described. In this system, an object-oriented approach is followed in which specific waveforms and sleep stages ("objects") are represented in terms of frames. The latter capture the morphological and spatio-temporal information for each object. An object detection module ("frame matcher"), operating on the frames, is employed to identify what features need to be extracted from the EEG and to trigger the appropriate "specialist"--specialized signal processing modules--to obtain values for these features. This leads to an opportunistic approach to EEG interpretation with quantitative information being extracted from the signal only when needed by the reasoning processes. The system has been tested on the detection of K complexes and sleep spindles. Its performance indicates that the approach followed is feasible and can become a powerful tool for automated EEG interpretation.

摘要

本文描述了一种基于知识的自动睡眠脑电图(EEG)分析方法。在该系统中,采用了面向对象的方法,其中特定的波形和睡眠阶段(“对象”)用框架来表示。后者捕获每个对象的形态和时空信息。一个基于框架操作的对象检测模块(“框架匹配器”)用于识别需要从脑电图中提取哪些特征,并触发适当的“专家”——专门的信号处理模块——来获取这些特征的值。这导致了一种机会主义的脑电图解释方法,即只有在推理过程需要时才从信号中提取定量信息。该系统已在K复合波和睡眠纺锤波的检测中进行了测试。其性能表明所采用的方法是可行的,并且可以成为自动脑电图解释的有力工具。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验