Suppr超能文献

基于排列熵的脑电图睡眠阶段分类研究

[A study of sleep stage classification based on permutation entropy for electroencephalogram].

作者信息

Li Gu, Fan Yingle, Pang Quan

机构信息

Wenthou Medical College, Wenzhou 325000, China.

出版信息

Sheng Wu Yi Xue Gong Cheng Xue Za Zhi. 2009 Aug;26(4):869-72.

Abstract

This paper presents a new method for automatic sleep stage classification which is based on the EEG permutation entropy. The EEG permutation entropy has notable distinction in each stage of sleep and manifests the trend of regular transforming. So it can be used as features of sleep EEG in each stage. Nearest neighbor is employed as the pattern recognition method to classify the stages of sleep. Experiments are conducted on 750 sleep EEG samples and the mean identification rate can be up to 79.6%.

摘要

本文提出了一种基于脑电图排列熵的自动睡眠阶段分类新方法。脑电图排列熵在睡眠的各个阶段有显著差异,并呈现出规律变化的趋势。因此,它可以用作各阶段睡眠脑电图的特征。采用最近邻法作为模式识别方法对睡眠阶段进行分类。对750个睡眠脑电图样本进行了实验,平均识别率可达79.6%。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验