Reyes-Pérez Agustín, Vargas María Del Carmen, Hernández Magdalena, Aguirre-von-Wobeser Eneas, Pérez-Rueda Ernesto, Encarnacion Sergio
Programa de Genómica Funcional de Procariotes, Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México, Apartado Postal 565-A, Cuernavaca, Morelos, Mexico.
Facultad de Ciencias, Posgrado en Ciencias Biológicas, Universidad Nacional Autónoma de México, Apartado Postal 70-153, C.P. 0415, Cuernavaca, D.F., Mexico.
Arch Microbiol. 2016 Nov;198(9):847-60. doi: 10.1007/s00203-016-1241-5. Epub 2016 May 25.
Organisms belonging to the genus Rhizobium colonize leguminous plant roots and establish a mutually beneficial symbiosis. Biofilms are structured ecosystems in which microbes are embedded in a matrix of extracellular polymeric substances, and their development is a multistep process. The biofilm formation processes of R. etli CFN42 were analyzed at an early (24-h incubation) and mature stage (72 h), comparing cells in the biofilm with cells remaining in the planktonic stage. A genome-wide microarray analysis identified 498 differentially regulated genes, implying that expression of ~8.3 % of the total R. etli gene content was altered during biofilm formation. In biofilms-attached cells, genes encoding proteins with diverse functions were overexpressed including genes involved in membrane synthesis, transport and chemotaxis, repression of flagellin synthesis, as well as surface components (particularly exopolysaccharides and lipopolysaccharides), in combination with the presence of activators or stimulators of N-acyl-homoserine lactone synthesis This suggests that R. etli is able to sense surrounding environmental conditions and accordingly regulate the transition from planktonic and biofilm growth. In contrast, planktonic cells differentially expressed genes associated with transport, motility (flagellar and twitching) and inhibition of exopolysaccharide synthesis. To our knowledge, this is the first report of nodulation and nitrogen assimilation-related genes being involved in biofilm formation in R. etli. These results contribute to the understanding of the physiological changes involved in biofilm formation by bacteria.
属于根瘤菌属的微生物定殖于豆科植物根部并建立互利共生关系。生物膜是结构化的生态系统,其中微生物嵌入细胞外聚合物基质中,其形成是一个多步骤过程。在早期(培养24小时)和成熟阶段(72小时)分析了费氏中华根瘤菌CFN42的生物膜形成过程,将生物膜中的细胞与浮游阶段剩余的细胞进行了比较。全基因组微阵列分析鉴定出498个差异调节基因,这意味着在生物膜形成过程中,费氏中华根瘤菌总基因含量的约8.3%的表达发生了改变。在附着于生物膜的细胞中,编码具有多种功能的蛋白质的基因被过度表达,包括参与膜合成、运输和趋化作用的基因、鞭毛蛋白合成的抑制以及表面成分(特别是胞外多糖和脂多糖),同时存在N-酰基高丝氨酸内酯合成的激活剂或刺激剂。这表明费氏中华根瘤菌能够感知周围环境条件,并相应地调节从浮游生长到生物膜生长的转变。相比之下,浮游细胞差异表达与运输、运动性(鞭毛和颤动)以及胞外多糖合成抑制相关的基因。据我们所知,这是关于结瘤和氮同化相关基因参与费氏中华根瘤菌生物膜形成的首次报道。这些结果有助于理解细菌生物膜形成过程中涉及的生理变化。