Couce-Rios Almudena, Lledós Agustí, Ujaque Gregori
Departament de Química, Universitat Autònoma de Barcelona, 08193, Cerdanyola del Vallès, Spain.
Chemistry. 2016 Jun 27;22(27):9311-20. doi: 10.1002/chem.201504645. Epub 2016 May 25.
The development of regioselective anti-Markovnikov alkene's hydroamination is a long-standing goal in catalysis. The Rh(COD)(DPEphos) complex is the most general and regioselective group 9 catalyst for such a process. The reaction mechanism for intermolecular hydroamination of alkenes catalyzed by Rh(DPEphos) complex is analyzed by means of DFT calculations. Hydroamination (alkene vs. amine activation routes) as well as oxidative amination pathways are analyzed. According to the computational results the operating mechanism can be generally described by alkene coordination, amine nucleophilic addition, proton transfer through the metal center and reductive elimination steps. The mechanism for the formation of the oxidative amination side product goes via a β-elimination after the nucleophilic addition and metal center protonation steps. The origin of the regioselectivity for the addition process (Markovnikov vs. anti-Markovnikov additions) is shown to be not charge but orbitally driven. Remarkably, η(2) to η(1) slippage degree on the alkene coordination mode is directly related to the regioselective outcome.
区域选择性反马氏规则烯烃氢胺化反应的发展是催化领域长期以来的目标。Rh(COD)(DPEphos)配合物是该过程中最通用且区域选择性最高的第9族催化剂。通过密度泛函理论(DFT)计算分析了Rh(DPEphos)配合物催化的烯烃分子间氢胺化反应机理。分析了氢胺化反应(烯烃与胺的活化途径)以及氧化胺化途径。根据计算结果,反应机理通常可描述为烯烃配位、胺亲核加成、通过金属中心的质子转移和还原消除步骤。氧化胺化副产物形成的机理是在亲核加成和金属中心质子化步骤之后通过β-消除。加成过程区域选择性(马氏规则与反马氏规则加成)的起源表明不是由电荷而是由轨道驱动的。值得注意的是,烯烃配位模式下的η(2)到η(1)滑移程度与区域选择性结果直接相关。