Ramos Miguel, Solà Miquel, Poater Albert
Institut de Química Computacional i Catàlisi and Departament de Química, Universitat de Girona, c/Maria Aurèlia Capmany 69, 17003, Girona, Catalonia, Spain.
J Mol Model. 2024 Sep 30;30(10):357. doi: 10.1007/s00894-024-06152-3.
The field of chemistry has significantly evolved, with catalysis playing a crucial role in transforming chemical processes. From Valerius' use of sulfuric acid in the sixteenth century to modern advancements, catalysis has driven innovations across various industries. The introduction of gold as a catalyst marked a pivotal shift, expanding its applications beyond ornamentation to homogeneous catalysis. Gold's unique properties, such as its electrophilic nature and flexibility, have enabled its use in synthesizing complex molecules, including those in nanomedicine and sustainable chemical processes. The development of gold-based complexes, particularly in hydroalkoxylation and hydroamination reactions, showcases their efficiency in forming carbon-oxygen bonds under mild conditions. Recent studies on dual gold catalysis and heterobimetallic complexes further highlight gold's versatility in achieving high turnover rates and selectivity. This evolution underscores the potential of gold catalysis in advancing environmentally sustainable methodologies and enhancing the scope of modern synthetic chemistry. The debate about the nature of monogold and dual-gold catalysis is open.
DFT calculations have played a key role in promoting the activation of alkynes, in particular the hydrophenoxylation of alkynes by metal-based catalysts. They not only help identify the most efficient and selective catalysts but also aid in screening for those capable of performing a dual metal catalytic mechanism. The most commonly used functionals are BP86 and B3LYP, with the SVP and 6-31G(d) basis sets employed for geometry optimizations, and M06 with TZVP or 6-311G(d,p) basis sets used for single-point energy calculations in a solvent. Grimme dispersion correction has been explicitly added either in the solvent single point energy calculations or in the gas phase geometry optimizations or in both. To point out that M06 implicitly includes part of this dispersion scheme.
化学领域已发生显著演变,催化作用在转变化学过程中发挥着关键作用。从16世纪瓦勒里乌斯使用硫酸到现代的进步,催化作用推动了各行业的创新。金作为催化剂的引入标志着一个关键转变,将其应用从装饰领域扩展到均相催化。金的独特性质,如亲电性质和灵活性,使其能够用于合成复杂分子,包括纳米医学和可持续化学过程中的分子。金基配合物的发展,特别是在氢烷氧基化和氢胺化反应中,展示了它们在温和条件下形成碳 - 氧键的效率。最近关于双金催化和异双金属配合物的研究进一步突出了金在实现高周转率和选择性方面的多功能性。这一演变强调了金催化在推进环境可持续方法和扩大现代合成化学范围方面的潜力。关于单金催化和双金催化本质的争论仍在继续。
密度泛函理论(DFT)计算在促进炔烃活化方面发挥了关键作用,特别是金属基催化剂对炔烃的氢苯氧基化反应。它们不仅有助于识别最有效和选择性的催化剂,还有助于筛选能够执行双金属催化机制的催化剂。最常用的泛函是BP86和B3LYP,在几何优化中使用SVP和6 - 31G(d)基组,在溶剂中的单点能量计算中使用M06与TZVP或6 - 311G(d,p)基组。在溶剂单点能量计算中、气相几何优化中或两者中都明确添加了格里姆色散校正。需要指出的是,M06隐含地包含了这种色散方案的一部分。