Suppr超能文献

《2010年全球疾病负担研究中精神、神经和物质使用障碍导致的超额死亡率》

Excess Mortality from Mental, Neurological, and Substance Use Disorders in the Global Burden of Disease Study 2010

作者信息

Charlson Fiona J, Baxter Amanda J, Dua Tarun, Degenhardt Louisa, Whiteford Harvey A, Vos Theo

Abstract

Findings from the Global Burden of Disease Study 2010 (GBD 2010) have reinforced the understanding of the significant impact that mental, neurological, and substance use disorders have on population health (Murray and others 2012; Whiteford and others 2013). One key finding was the health transition from communicable to noncommunicable diseases across all regions. This transition was particularly evident in low- and middle-income countries (LMICs) (Murray and others 2012), where the proportion of burden attributable to noncommunicable disease increased from 36 percent in 1990 to 49 percent in 2010, compared with an increase from 80 percent to 83 percent in high-income countries (HICs) (IHME 2013). GBD 2010 estimates that the majority of disease burden caused by mental, neurological, and substance use disorders is from nonfatal health loss; only 15 percent of the total burden is from mortality in years of life lost (YLLs) (IHME 2013). This finding may erroneously lead to the interpretation that premature death in people with mental, neurological, and substance use disorders is inconsequential. A recent review has shown higher mortality risks than the general population for a range of mental disorders, with a standardized mortality ratio (SMR) as high as 14.7 for opioid use disorders (Chesney, Goodwin, and Fazel 2014). Excess mortality in people with epilepsy is reported to be two-to three-fold higher than that of the general population, with an increased risk up to six-fold higher in LMICs (Diop and others 2005). A significant proportion of these deaths is preventable (Diop and others 2005; Jette and Trevathan 2014). There are multiple causes for lower life expectancy in people with mental disorders (Chang and others 2011; Crump and others 2013; Lawrence, Hancock, and Kisely 2013). Self-harm is an important cause of death, but the majority of premature deaths are caused by chronic physical disease, particularly ischemic heart disease (IHD), stroke, type II diabetes, respiratory diseases, and cancer (Crump and others 2013; Lawrence, Hancock, and Kisely 2013). Dementia is an independent risk factor for premature death; and patients with physical impairment, inactivity, and medical comorbidities are at increased risk (Park and others 2014). In many HICs, the life expectancy gap between those with mental disorders and the general population is widening. The general population enjoys a longer life, while the lifespan for those with mental, neurological, and substance use disorders remains significantly lower and unchanged (Lawrence, Hancock, and Kisely 2013). Information on the extent and causes of premature mortality in people with mental, neurological, and substance use disorders in LMICs is sparse, but these groups are understood to experience reduced life expectancy, although causes of death may vary across regions. This chapter explores the cause-specific and excess mortality of individual mental, neurological, and substance use disorders estimated by GBD 2010 and discusses the results. We present the additional burden that can be attributed to these disorders, using GBD results for comparative risk assessments (CRAs) assessing mental, neurological, and substance use disorders as risk factors for other health outcomes. We focus on the following mental, neurological, and substance use disorders: Mental disorders, including schizophrenia, major depressive disorder, anxiety disorders, bipolar disorder, autistic disorder, and disruptive behavioral disorders (attention-deficit hyperactivity disorder [ADHD] and conduct disorder [CD]). Substance use disorders, including alcohol use disorders (alcohol dependence and fetal alcohol syndrome) and opioid, cocaine, cannabis, and amphetamine dependence. Neurological disorders, including dementia, epilepsy, and migraine. For the purposes of GBD 2010, countries were grouped into 21 regions and 7 super-regions based on geographic proximity and levels of child and adult mortality (IHME 2014; Murray and others 2012). Regions were further grouped into developed and developing categories using the GBD 2010 method. Details of countries in each region and super-region can be found on the Institute for Health Metrics and Evaluation (IHME) website (IHME 2014). The mortality associated with a disease can be quantified using two different, yet complementary, methods employed as part of the GBD analyses. First, cause-specific mortality draws on vital registration systems and verbal autopsy studies that identify deaths attributed to a single underlying cause using the International Classification of Diseases (ICD) death coding system. Second, GBD creates natural history models of disease, drawing on a range of epidemiological inputs, which ultimately provide epidemiological estimates for parameters including excess mortality—that is, the all-cause mortality rate in a population with the disorder above the all-cause mortality rate observed in a population without the disorder. By definition, the estimates of excess deaths include cause-specific deaths. Although arbitrary, the ICD conventions are a necessary attempt to deal with the multi-causal nature of mortality and avoid the double-counting of deaths. Despite the system’s clear strengths, cause-specific mortality estimated via the ICD obscures the contribution of other underlying causes of death—for example, suicide as a direct result of major depressive disorder—and likely underestimates the true number of deaths attributable to a particular disorder. However, the estimation of excess mortality using natural history models often includes deaths from causal and noncausal origins and likely overestimates the true number of deaths attributable to a particular disorder. The challenge is to parse out causal contributions to mortality, beyond those already identified as cause-specific, from the effects of confounders. The quantification of the burden attributable to risk factors requires approaches such as CRA, which is now an integral part of the GBD studies. The fundamental approach is to calculate the proportion of deaths or disease burden caused by specific risk factors—for example, lung cancer caused by tobacco smoking—while holding all other independent factors constant. A counterfactual approach is used to compare the burden associated to an outcome with the amount expected in a hypothetical situation of ideal risk factor exposure, for example, zero prevalence. This provides a consistent method for estimating the changes in population health when decreasing or increasing the level of exposure to risk factors (Lim and others 2012).

摘要

《2010年全球疾病负担研究》(GBD 2010)的研究结果进一步加深了人们对精神、神经和物质使用障碍对人群健康产生重大影响的理解(Murray等人,2012年;Whiteford等人,2013年)。一项关键发现是所有地区均出现了从传染病向非传染病的健康转型。这种转型在低收入和中等收入国家(LMICs)尤为明显(Murray等人,2012年),在这些国家,非传染病所致负担比例从1990年的36%增至2010年的49%,而高收入国家(HICs)的这一比例则从80%增至83%(IHME,2013年)。GBD 2010估计,精神、神经和物质使用障碍导致的疾病负担大部分来自非致命性健康损失;在总负担中,仅有15%来自寿命损失年数(YLLs)中的死亡(IHME,2013年)。这一发现可能会错误地导致人们认为,患有精神、神经和物质使用障碍的人过早死亡无关紧要。最近一项综述显示,一系列精神障碍患者的死亡风险高于普通人群,阿片类物质使用障碍的标准化死亡比(SMR)高达14.7(Chesney、Goodwin和Fazel,2014年)。据报告,癫痫患者的超额死亡率比普通人群高出两到三倍,在低收入和中等收入国家,这一风险增加高达六倍(Diop等人,2005年)。这些死亡中有很大一部分是可以预防的(Diop等人,2005年;Jette和Trevathan,2014年)。精神障碍患者预期寿命较低有多种原因(Chang等人,2011年;Crump等人,2013年;Lawrence、Hancock和Kisely,2013年)。自我伤害是一个重要的死亡原因,但大多数过早死亡是由慢性躯体疾病导致的,尤其是缺血性心脏病(IHD)、中风、II型糖尿病、呼吸系统疾病和癌症(Crump等人,2013年;Lawrence、Hancock和Kisely,2013年)。痴呆症是过早死亡的一个独立危险因素;身体有损伤、缺乏活动以及患有合并症的患者风险更高(Park等人,2014年)。在许多高收入国家,精神障碍患者与普通人群之间的预期寿命差距正在扩大。普通人群的寿命更长,而患有精神、神经和物质使用障碍的人的寿命仍显著较低且没有变化(Lawrence、Hancock和Kisely,2013年)。关于低收入和中等收入国家中患有精神、神经和物质使用障碍的人过早死亡的程度和原因的信息很少,但据了解,这些人群的预期寿命会缩短,尽管不同地区的死亡原因可能有所不同。本章探讨了GBD 2010估计的各类精神、神经和物质使用障碍的死因特异性死亡率和超额死亡率,并讨论了结果。我们利用GBD结果进行比较风险评估(CRA),将精神、神经和物质使用障碍作为其他健康结果的危险因素,展示了可归因于这些障碍的额外负担。我们关注以下精神、神经和物质使用障碍:精神障碍,包括精神分裂症、重度抑郁症、焦虑症、双相情感障碍、自闭症谱系障碍以及破坏性行为障碍(注意力缺陷多动障碍[ADHD]和品行障碍[CD])。物质使用障碍,包括酒精使用障碍(酒精依赖和胎儿酒精综合征)以及阿片类物质、可卡因、大麻和苯丙胺依赖。神经障碍,包括痴呆症、癫痫和偏头痛。为了进行GBD 2010研究,根据地理位置接近程度以及儿童和成人死亡率水平,将各国分为21个地区和7个超级地区(IHME,2014年;Murray等人,2012年)。采用GBD 2010方法,将各地区进一步分为发达和发展中类别。每个地区和超级地区的国家详情可在健康指标与评估研究所(IHME)网站上查询(IHME,2014年)。与疾病相关的死亡率可以通过GBD分析中使用的两种不同但互补的方法进行量化。首先,死因特异性死亡率利用生命登记系统和口头尸检研究,这些研究使用国际疾病分类(ICD)死亡编码系统确定归因于单一潜在原因的死亡。其次,GBD利用一系列流行病学数据创建疾病自然史模型,最终提供包括超额死亡率在内的参数的流行病学估计值,即患有该疾病的人群的全因死亡率高于未患该疾病的人群中观察到的确全因死亡率。根据定义,超额死亡估计值包括死因特异性死亡。尽管ICD分类是任意的,但它是处理死亡率多因性并避免死亡重复计算的必要尝试。尽管该系统有明显优势,但通过ICD估计的死因特异性死亡率掩盖了其他潜在死亡原因的贡献——例如,重度抑郁症直接导致的自杀——并且可能低估了特定疾病导致的实际死亡人数。然而,使用自然史模型估计超额死亡率通常包括因果和非因果来源的死亡,并且可能高估了特定疾病导致的实际死亡人数。挑战在于从混杂因素影响中梳理出除已确定为死因特异性之外的对死亡率的因果贡献。对危险因素所致负担的量化需要采用CRA等方法,现在CRA已成为GBD研究的一个组成部分。基本方法是计算特定危险因素导致的死亡或疾病负担比例——例如,吸烟导致的肺癌——同时保持所有其他独立因素不变。采用反事实方法将与某一结果相关的负担与理想危险因素暴露假设情况下预期的负担量进行比较,例如,患病率为零的情况。这为估计降低或增加危险因素暴露水平时人群健康的变化提供了一种一致的方法(Lim等人,2012年)。

相似文献

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验