Suppr超能文献

用于钼-铜一氧化碳脱氢酶结构/功能研究的逼真计算机模拟模型。

A realistic in silico model for structure/function studies of molybdenum-copper CO dehydrogenase.

作者信息

Rokhsana Dalia, Large Tao A G, Dienst Morgan C, Retegan Marius, Neese Frank

机构信息

Department of Chemistry, Whitman College, Walla Walla, WA, 99362, USA.

Max Planck Institute for Chemical Energy Conversion, 45470, Mülheim an der Ruhr, Germany.

出版信息

J Biol Inorg Chem. 2016 Jul;21(4):491-9. doi: 10.1007/s00775-016-1359-6. Epub 2016 May 26.

Abstract

CO dehydrogenase (CODH) is an environmentally crucial bacterial enzyme that oxidizes CO to CO2 at a Mo-Cu active site. Despite the close to atomic resolution structure (1.1 Å), significant uncertainties have remained with regard to the protonation state of the water-derived equatorial ligand coordinated at the Mo-center, as well as the nature of intermediates formed during the catalytic cycle. To address the protonation state of the equatorial ligand, we have developed a realistic in silico QM model (~179 atoms) containing structurally essential residues surrounding the active site. Using our QM model, we examined each plausible combination of redox states (Mo(VI)-Cu(I), Mo(V)-Cu(II), Mo(V)-Cu(I), and Mo(IV)-Cu(I)) and Mo-coordinated equatorial ligands (O(2-), OH(-), H2O), as well as the effects of second-sphere residues surrounding the active site. Herein, we present a refined computational model for the Mo(VI) state in which Glu763 acts as an active site base, leading to a MoO2-like core and a protonated Glu763. Calculated structural and spectroscopic data (hyperfine couplings) are in support of a MoO2-like core in agreement with XRD data. The calculated two-electron reduction potential (E = -467 mV vs. SHE) is in reasonable agreement with the experimental value (E = -558 mV vs. SHE) for the redox couple comprising an equatorial oxo ligand and protonated Glu763 in the Mo(VI)-Cu(I) state and an equatorial water in the Mo(IV)-Cu(I) state. We also suggest a potential role of second-sphere residues (e.g., Glu763, Phe390) based on geometric changes observed upon exclusion of these residues in the most plausible oxidized states.

摘要

一氧化碳脱氢酶(CODH)是一种对环境至关重要的细菌酶,它在钼-铜活性位点将CO氧化为CO₂。尽管其结构已接近原子分辨率(1.1 Å),但关于钼中心配位的源自水的赤道配体的质子化状态,以及催化循环中形成的中间体的性质,仍存在重大不确定性。为了解决赤道配体的质子化状态问题,我们开发了一个逼真的计算机量子力学(QM)模型(约179个原子),该模型包含活性位点周围的结构关键残基。使用我们的QM模型,我们研究了氧化还原状态(Mo(VI)-Cu(I)、Mo(V)-Cu(II)、Mo(V)-Cu(I)和Mo(IV)-Cu(I))与钼配位的赤道配体(O²⁻、OH⁻、H₂O)的每种合理组合,以及活性位点周围二级球体残基的影响。在此,我们提出了一种Mo(VI)状态的优化计算模型,其中Glu763作为活性位点碱,形成类似MoO₂的核心和质子化的Glu763。计算得到的结构和光谱数据(超精细耦合)支持与X射线衍射(XRD)数据一致的类似MoO₂的核心。计算得到的双电子还原电位(E = -467 mV vs. SHE)与实验值(E = -558 mV vs. SHE)合理相符,该实验值是关于在Mo(VI)-Cu(I)状态下包含赤道氧代配体和质子化Glu763以及在Mo(IV)-Cu(I)状态下包含赤道水的氧化还原对的。我们还基于在最合理的氧化态中排除这些残基时观察到的几何变化,提出了二级球体残基(如Glu763、Phe390)的潜在作用。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验