Rokhsana Dalia, Large Tao A G, Dienst Morgan C, Retegan Marius, Neese Frank
Department of Chemistry, Whitman College, Walla Walla, WA, 99362, USA.
Max Planck Institute for Chemical Energy Conversion, 45470, Mülheim an der Ruhr, Germany.
J Biol Inorg Chem. 2016 Jul;21(4):491-9. doi: 10.1007/s00775-016-1359-6. Epub 2016 May 26.
CO dehydrogenase (CODH) is an environmentally crucial bacterial enzyme that oxidizes CO to CO2 at a Mo-Cu active site. Despite the close to atomic resolution structure (1.1 Å), significant uncertainties have remained with regard to the protonation state of the water-derived equatorial ligand coordinated at the Mo-center, as well as the nature of intermediates formed during the catalytic cycle. To address the protonation state of the equatorial ligand, we have developed a realistic in silico QM model (~179 atoms) containing structurally essential residues surrounding the active site. Using our QM model, we examined each plausible combination of redox states (Mo(VI)-Cu(I), Mo(V)-Cu(II), Mo(V)-Cu(I), and Mo(IV)-Cu(I)) and Mo-coordinated equatorial ligands (O(2-), OH(-), H2O), as well as the effects of second-sphere residues surrounding the active site. Herein, we present a refined computational model for the Mo(VI) state in which Glu763 acts as an active site base, leading to a MoO2-like core and a protonated Glu763. Calculated structural and spectroscopic data (hyperfine couplings) are in support of a MoO2-like core in agreement with XRD data. The calculated two-electron reduction potential (E = -467 mV vs. SHE) is in reasonable agreement with the experimental value (E = -558 mV vs. SHE) for the redox couple comprising an equatorial oxo ligand and protonated Glu763 in the Mo(VI)-Cu(I) state and an equatorial water in the Mo(IV)-Cu(I) state. We also suggest a potential role of second-sphere residues (e.g., Glu763, Phe390) based on geometric changes observed upon exclusion of these residues in the most plausible oxidized states.
一氧化碳脱氢酶(CODH)是一种对环境至关重要的细菌酶,它在钼-铜活性位点将CO氧化为CO₂。尽管其结构已接近原子分辨率(1.1 Å),但关于钼中心配位的源自水的赤道配体的质子化状态,以及催化循环中形成的中间体的性质,仍存在重大不确定性。为了解决赤道配体的质子化状态问题,我们开发了一个逼真的计算机量子力学(QM)模型(约179个原子),该模型包含活性位点周围的结构关键残基。使用我们的QM模型,我们研究了氧化还原状态(Mo(VI)-Cu(I)、Mo(V)-Cu(II)、Mo(V)-Cu(I)和Mo(IV)-Cu(I))与钼配位的赤道配体(O²⁻、OH⁻、H₂O)的每种合理组合,以及活性位点周围二级球体残基的影响。在此,我们提出了一种Mo(VI)状态的优化计算模型,其中Glu763作为活性位点碱,形成类似MoO₂的核心和质子化的Glu763。计算得到的结构和光谱数据(超精细耦合)支持与X射线衍射(XRD)数据一致的类似MoO₂的核心。计算得到的双电子还原电位(E = -467 mV vs. SHE)与实验值(E = -558 mV vs. SHE)合理相符,该实验值是关于在Mo(VI)-Cu(I)状态下包含赤道氧代配体和质子化Glu763以及在Mo(IV)-Cu(I)状态下包含赤道水的氧化还原对的。我们还基于在最合理的氧化态中排除这些残基时观察到的几何变化,提出了二级球体残基(如Glu763、Phe390)的潜在作用。