Hofmann Matthias, Kassube Jutta K, Graf Tobias
Anorganisch-Chemisches Institut, Universität Heidelberg, 69120 Heidelberg, Germany.
J Biol Inorg Chem. 2005 Aug;10(5):490-5. doi: 10.1007/s00775-005-0661-5. Epub 2005 Sep 23.
Density functional theory computations at the B3LYP/SDDp//B3LYP/Lanl2DZ level were performed on model complexes derived from (Me(2)C(2)S(2))Mo(O)(2)-S-CuSMe or its oxo protonated form to gain insight into the reaction steps involved in substrate oxidation of a Mo-/Cu-dependent CO dehydrogenase. Only the bisoxo but not the hydroxo oxo complex was found to oxidize CO exothermically. A thiocarbamate complex structurally characterized as the reaction product of the enzyme with the inhibitor n-butylisonitrile corresponds to a thermodynamic well on the potential energy surface. For the formation of the analogous thiocarbonate complex from CO oxidation, however, we do not find a significant thermodynamic driving force. In the protein matrix of the enzyme this species should be further destabilized, as it requires the metal centers to move apart considerably from each other.
在B3LYP/SDDp//B3LYP/Lanl2DZ水平上进行密度泛函理论计算,研究对象是从(Me(2)C(2)S(2))Mo(O)(2)-S-CuSMe或其氧代质子化形式衍生而来的模型配合物,以深入了解钼/铜依赖性一氧化碳脱氢酶底物氧化所涉及的反应步骤。结果发现,只有双氧代配合物而非羟基氧代配合物能使一氧化碳发生放热氧化。一种硫代氨基甲酸盐配合物在结构上被表征为该酶与抑制剂正丁基异腈的反应产物,它对应于势能面上的一个热力学阱。然而,对于由一氧化碳氧化形成类似的硫代碳酸盐配合物,我们并未发现显著的热力学驱动力。在该酶的蛋白质基质中,这种物质应会进一步失稳,因为它要求金属中心彼此大幅分开。