Pathak Amar Deep, Nedea Silvia, van Duin Adri C T, Zondag Herbert, Rindt Camilo, Smeulders David
Energy Technology, P.O. Box 513, 5600 MB Eindhoven, The Netherlands.
Phys Chem Chem Phys. 2016 Jun 21;18(23):15838-47. doi: 10.1039/c6cp02762h. Epub 2016 May 27.
MgCl2 hydrates are considered as high-potential candidates for seasonal heat storage materials. These materials have high storage capacity and fast dehydration kinetics. However, as a side reaction to dehydration, hydrolysis may occur. Hydrolysis is an irreversible reaction, which produces HCl gas thus affecting the durability of heat storage systems. In this study, we present the parameterization of a reactive force field (ReaxFF) for MgCl2 hydrates to study the dehydration and hydrolysis kinetics of MgCl2·H2O and MgCl2·2H2O. The ReaxFF parameters have been derived by training against quantum mechanics data obtained from Density Functional Theory (DFT) calculations consisting of bond dissociation curves, angle bending curves, reaction enthalpies, and equation of state. A single-parameter search algorithm in combination with a Metropolis Monte Carlo algorithm is successfully used for this ReaxFF parameterization. The newly developed force field is validated by examining the elastic properties of MgCl2 hydrates and the proton transfer reaction barrier, which is important for the hydrolysis reaction. The bulk moduli of MgCl2·H2O and MgCl2·2H2O obtained from ReaxFF are in close agreement with the bulk moduli obtained from DFT. A barrier of 20.24 kcal mol(-1) for the proton transfer in MgCl2·2H2O is obtained, which is in good agreement with the barrier (19.55 kcal mol(-1)) obtained from DFT. Molecular dynamics simulations using the newly developed ReaxFF on 2D-periodic slabs of MgCl2·H2O and MgCl2·2H2O show that the dehydration rate increases more rapidly with temperature in MgCl2·H2O than in MgCl2·2H2O, in the temperature range 300-500 K. The onset temperature of HCl formation, a crucial design parameter in seasonal heat storage systems, is observed at 340 K for MgCl2·H2O, which is in agreement with experiments. The HCl formation is not observed for MgCl2·2H2O. The diffusion coefficient of H2O through MgCl2·H2O is lower than through MgCl2·2H2O, and can become a rate-limiting step. The diffusion coefficient increases with temperature and follows the Arrhenius law both for MgCl2·H2O and MgCl2·2H2O. These results indicate the validity of the ReaxFF approach for studying MgCl2 hydrates and provide important atomistic-scale insight of reaction kinetics and H2O transport in these materials.
氯化镁水合物被认为是季节性储热材料的高潜力候选物。这些材料具有高储能容量和快速脱水动力学。然而,作为脱水的副反应,可能会发生水解。水解是不可逆反应,会产生HCl气体,从而影响储热系统的耐久性。在本研究中,我们给出了用于氯化镁水合物的反应力场(ReaxFF)的参数化,以研究MgCl₂·H₂O和MgCl₂·2H₂O的脱水和水解动力学。ReaxFF参数是通过针对从密度泛函理论(DFT)计算获得的量子力学数据进行训练得出的,这些数据包括键解离曲线、角弯曲曲线、反应焓和状态方程。一种单参数搜索算法与Metropolis蒙特卡罗算法相结合,成功用于此ReaxFF参数化。通过检查氯化镁水合物的弹性性质和质子转移反应势垒(这对水解反应很重要),对新开发的力场进行了验证。从ReaxFF获得的MgCl₂·H₂O和MgCl₂·2H₂O的体模量与从DFT获得的体模量非常一致。获得了MgCl₂·2H₂O中质子转移的势垒为20.24 kcal mol⁻¹,这与从DFT获得的势垒(19.55 kcal mol⁻¹)非常一致。使用新开发的ReaxFF对MgCl₂·H₂O和MgCl₂·2H₂O的二维周期平板进行分子动力学模拟表明,在300 - 500 K温度范围内,MgCl₂·H₂O中的脱水速率随温度升高比MgCl₂·2H₂O中更快。对于季节性储热系统中的关键设计参数HCl形成的起始温度,在MgCl₂·H₂O中观察到为340 K,这与实验结果一致。在MgCl₂·2H₂O中未观察到HCl形成。H₂O通过MgCl₂·H₂O的扩散系数低于通过MgCl₂·2H₂O的扩散系数,并且可能成为限速步骤。扩散系数随温度升高而增加,并且MgCl₂·H₂O和MgCl₂·2H₂O均遵循阿伦尼乌斯定律。这些结果表明ReaxFF方法用于研究氯化镁水合物的有效性,并提供了这些材料中反应动力学和H₂O传输的重要原子尺度见解。