Suppr超能文献

通过表达条件性沉默血管内皮生长因子的腺相关病毒实现缺血后肢的血管再生

Vascular Regeneration in Ischemic Hindlimb by Adeno-Associated Virus Expressing Conditionally Silenced Vascular Endothelial Growth Factor.

作者信息

Boden Jeffrey, Lassance-Soares Roberta Marques, Wang Huilan, Wei Yuntao, Spiga Maria-Grazia, Adi Jennipher, Layman Hans, Yu Hong, Vazquez-Padron Roberto I, Andreopoulos Fotios, Webster Keith A

机构信息

Department of Molecular and Cellular Pharmacology, University of Miami Miller School of Medicine, Miami, FL Vascular Biology Institute, University of Miami Miller School of Medicine, Miami, FL.

Department of Surgery, University of Miami Miller School of Medicine, Miami, FL.

出版信息

J Am Heart Assoc. 2016 May 26;5(6):e001815. doi: 10.1161/JAHA.115.001815.

Abstract

BACKGROUND

Critical limb ischemia (CLI) is the extreme manifestation of peripheral artery disease, a major unmet clinical need for which lower limb amputation is the only option for many patients. After 2 decades in development, therapeutic angiogenesis has been tested clinically via intramuscular delivery of proangiogenic proteins, genes, and stem cells. Efficacy has been modest to absent, and the largest phase 3 trial of gene therapy for CLI reported a worsening trend of plasmid fibroblast growth factor. In all clinical trials to date, gene therapy has used unregulated vectors with limited duration of expression. Only unregulated extended expression vectors such as adeno-associated virus (AAV) and lentivirus have been tested in preclinical models.

METHODS AND RESULTS

We present preclinical results of ischemia (hypoxia)-regulated conditionally silenced (CS) AAV-human vascular endothelial growth factor (hVEGF) gene delivery that shows efficacy and safety in a setting where other strategies fail. In a BALB/c mouse model of CLI, we show that gene therapy with AAV-CS-hVEGF, but not unregulated AAV or plasmid, vectors conferred limb salvage, protection from necrosis, and vascular regeneration when delivered via intramuscular or intra-arterial routes. All vector treatments conferred increased capillary density, but organized longitudinal arteries were selectively generated by AAV-CS-hVEGF. AAV-CS-hVEGF therapy reversibly activated angiogenic and vasculogenic genes, including Notch, SDF1, Angiopoietin, and Ephrin-B2. Reoxygenation extinguished VEGF expression and inactivated the program with no apparent adverse side effects.

CONCLUSIONS

Restriction of angiogenic growth factor expression to regions of ischemia supports the safe and stable reperfusion of hindlimbs in a clinically relevant murine model of CLI.

摘要

背景

严重肢体缺血(CLI)是外周动脉疾病的极端表现,是一项重大的未满足的临床需求,对于许多患者而言,下肢截肢是唯一的选择。经过20年的研发,治疗性血管生成已通过肌肉注射促血管生成蛋白、基因和干细胞进行了临床测试。疗效一般或不存在,并且CLI基因治疗的最大规模3期试验报告了质粒成纤维细胞生长因子有恶化趋势。在迄今为止的所有临床试验中,基因治疗都使用了表达持续时间有限的非调控载体。只有腺相关病毒(AAV)和慢病毒等非调控的延长表达载体已在临床前模型中进行了测试。

方法和结果

我们展示了缺血(缺氧)调节的条件性沉默(CS)AAV-人血管内皮生长因子(hVEGF)基因递送的临床前结果,该结果表明在其他策略失败的情况下其具有疗效和安全性。在CLI的BALB/c小鼠模型中,我们表明,通过肌肉内或动脉内途径递送时,AAV-CS-hVEGF基因治疗可实现肢体挽救、防止坏死和血管再生,而未调控的AAV或质粒载体则不能。所有载体治疗均使毛细血管密度增加,但AAV-CS-hVEGF选择性地生成了有组织的纵向动脉。AAV-CS-hVEGF治疗可逆地激活了血管生成和血管发生基因,包括Notch、SDF1、血管生成素和Ephrin-B2。再灌注消除了VEGF表达并使该程序失活,且无明显不良副作用。

结论

将血管生成生长因子的表达限制在缺血区域可支持在CLI的临床相关小鼠模型中安全、稳定地对后肢进行再灌注。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3da7/4937238/8d1fc412cb20/JAH3-5-e001815-g001.jpg

相似文献

2
Therapeutic Benefits and Adverse Effects of Combined Proangiogenic Gene Therapy in Mouse Critical Leg Ischemia.
Ann Vasc Surg. 2017 Apr;40:252-261. doi: 10.1016/j.avsg.2016.08.027. Epub 2016 Nov 27.
7
Cell-mediated delivery of VEGF modified mRNA enhances blood vessel regeneration and ameliorates murine critical limb ischemia.
J Control Release. 2019 Sep 28;310:103-114. doi: 10.1016/j.jconrel.2019.08.014. Epub 2019 Aug 16.
8
Intramuscular E-selectin/adeno-associated virus gene therapy promotes wound healing in an ischemic mouse model.
J Surg Res. 2018 Aug;228:68-76. doi: 10.1016/j.jss.2018.02.061. Epub 2018 Mar 26.
10
E-Selectin/AAV Gene Therapy Promotes Myogenesis and Skeletal Muscle Recovery in a Mouse Hindlimb Ischemia Model.
Cardiovasc Ther. 2023 May 19;2023:6679390. doi: 10.1155/2023/6679390. eCollection 2023.

引用本文的文献

2
Gangrene, revascularization, and limb function improved with E-selectin/adeno-associated virus gene therapy.
JVS Vasc Sci. 2020 Nov 22;2:20-32. doi: 10.1016/j.jvssci.2020.10.001. eCollection 2021.
3
Rebuilding the Vascular Network: and Approaches.
Front Cell Dev Biol. 2021 Apr 21;9:639299. doi: 10.3389/fcell.2021.639299. eCollection 2021.
4
Therapeutic vascularization in regenerative medicine.
Stem Cells Transl Med. 2020 Apr;9(4):433-444. doi: 10.1002/sctm.19-0319. Epub 2020 Jan 10.
6
Neuraminidase-mediated desialylation augments AAV9-mediated gene expression in skeletal muscle.
J Gene Med. 2018 Sep;20(9):e3049. doi: 10.1002/jgm.3049. Epub 2018 Sep 4.
7
Myocardial infarction stabilization by cell-based expression of controlled Vascular Endothelial Growth Factor levels.
J Cell Mol Med. 2018 May;22(5):2580-2591. doi: 10.1111/jcmm.13511. Epub 2018 Feb 25.
8
The Gene Therapy Resource Program: A Decade of Dedication to Translational Research by the National Heart, Lung, and Blood Institute.
Hum Gene Ther Clin Dev. 2017 Dec;28(4):178-186. doi: 10.1089/humc.2017.170. Epub 2017 Nov 27.
9
Biodegradable Carriers for Delivery of VEGF Plasmid DNA for the Treatment of Critical Limb Ischemia.
Front Pharmacol. 2017 Aug 9;8:528. doi: 10.3389/fphar.2017.00528. eCollection 2017.

本文引用的文献

1
Whole-mount imaging of the mouse hindlimb vasculature using the lipophilic carbocyanine dye DiI.
Biotechniques. 2012 Jul 1;53(1):000113907. doi: 10.2144/000113907.
2
Modulating the vascular response to limb ischemia: angiogenic and cell therapies.
Circ Res. 2015 Apr 24;116(9):1561-78. doi: 10.1161/CIRCRESAHA.115.303565.
5
MicroRNA-93 controls perfusion recovery after hindlimb ischemia by modulating expression of multiple genes in the cell cycle pathway.
Circulation. 2013 Apr 30;127(17):1818-28. doi: 10.1161/CIRCULATIONAHA.112.000860. Epub 2013 Apr 4.
6
Towards a more relevant hind limb model of muscle ischaemia.
Atherosclerosis. 2013 Mar;227(1):1-8. doi: 10.1016/j.atherosclerosis.2012.10.060. Epub 2012 Nov 2.
7
Update on clinical trials evaluating the effect of biologic therapy in patients with critical limb ischemia.
J Vasc Surg. 2012 Jul;56(1):264-6. doi: 10.1016/j.jvs.2012.03.255. Epub 2012 May 25.
8
Skeletal muscle-specific genetic determinants contribute to the differential strain-dependent effects of hindlimb ischemia in mice.
Am J Pathol. 2012 May;180(5):2156-69. doi: 10.1016/j.ajpath.2012.01.032. Epub 2012 Mar 21.
9
Current state of diagnosis and management of critical limb ischemia.
Curr Cardiol Rep. 2012 Apr;14(2):160-70. doi: 10.1007/s11886-012-0251-4.
10
Effect of hypoxia-inducible factor-1alpha gene therapy on walking performance in patients with intermittent claudication.
Circulation. 2011 Oct 18;124(16):1765-73. doi: 10.1161/CIRCULATIONAHA.110.009407. Epub 2011 Sep 26.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验