Suppr超能文献

在知觉分类过程中,什么被自动化了?

What is automatized during perceptual categorization?

作者信息

Roeder Jessica L, Ashby F Gregory

机构信息

Department of Psychological and Brain Sciences, University of California, Santa Barbara, Santa Barbara, CA 93106, USA.

Department of Psychological and Brain Sciences, University of California, Santa Barbara, Santa Barbara, CA 93106, USA.

出版信息

Cognition. 2016 Sep;154:22-33. doi: 10.1016/j.cognition.2016.04.005. Epub 2016 May 24.

Abstract

An experiment is described that tested whether stimulus-response associations or an abstract rule are automatized during extensive practice at perceptual categorization. Twenty-seven participants each completed 12,300 trials of perceptual categorization, either on rule-based (RB) categories that could be learned explicitly or information-integration (II) categories that required procedural learning. Each participant practiced predominantly on a primary category structure, but every third session they switched to a secondary structure that used the same stimuli and responses. Half the stimuli retained their same response on the primary and secondary categories (the congruent stimuli) and half switched responses (the incongruent stimuli). Several results stood out. First, performance on the primary categories met the standard criteria of automaticity by the end of training. Second, for the primary categories in the RB condition, accuracy and response time (RT) were identical on congruent and incongruent stimuli. In contrast, for the primary II categories, accuracy was higher and RT was lower for congruent than for incongruent stimuli. These results are consistent with the hypothesis that rules are automatized in RB tasks, whereas stimulus-response associations are automatized in II tasks. A cognitive neuroscience theory is proposed that accounts for these results.

摘要

本文描述了一项实验,该实验测试了在知觉分类的大量练习过程中,刺激-反应关联或抽象规则是否会自动化。27名参与者每人完成了12300次知觉分类试验,试验内容要么是基于可明确学习的规则(RB)类别,要么是需要程序学习的信息整合(II)类别。每位参与者主要针对一种主要类别结构进行练习,但每三节课他们会切换到使用相同刺激和反应的次要结构。一半的刺激在主要和次要类别上保持相同的反应(一致刺激),另一半则切换反应(不一致刺激)。有几个结果很突出。首先,在训练结束时,主要类别的表现达到了自动化的标准标准。其次,在RB条件下的主要类别中,一致和不一致刺激的准确性和反应时间(RT)相同。相比之下,对于主要的II类别,一致刺激的准确性更高,RT比不一致刺激更低。这些结果与以下假设一致:规则在RB任务中自动化,而刺激-反应关联在II任务中自动化。本文提出了一种认知神经科学理论来解释这些结果。

相似文献

1
What is automatized during perceptual categorization?
Cognition. 2016 Sep;154:22-33. doi: 10.1016/j.cognition.2016.04.005. Epub 2016 May 24.
2
Procedural learning in perceptual categorization.
Mem Cognit. 2003 Oct;31(7):1114-25. doi: 10.3758/bf03196132.
3
The time course of explicit and implicit categorization.
Atten Percept Psychophys. 2015 Oct;77(7):2476-90. doi: 10.3758/s13414-015-0933-2.
4
The transfer of category knowledge by macaques (Macaca mulatta) and humans (Homo sapiens).
J Comp Psychol. 2018 Feb;132(1):58-74. doi: 10.1037/com0000095. Epub 2017 Dec 14.
5
Automaticity in rule-based and information-integration categorization.
Atten Percept Psychophys. 2010 May;72(4):1013-31. doi: 10.3758/APP.72.4.1013.
6
Category label and response location shifts in category learning.
Psychol Res. 2010 Mar;74(2):219-36. doi: 10.1007/s00426-009-0245-z. Epub 2009 May 27.
7
Out of sight, out of mind: Categorization learning and normal aging.
Neuropsychologia. 2016 Oct;91:222-233. doi: 10.1016/j.neuropsychologia.2016.08.013. Epub 2016 Aug 14.
8
Implicit and explicit categorization: a tale of four species.
Neurosci Biobehav Rev. 2012 Nov;36(10):2355-69. doi: 10.1016/j.neubiorev.2012.09.003. Epub 2012 Sep 11.
9
Feedback can be superior to observational training for both rule-based and information-integration category structures.
Q J Exp Psychol (Hove). 2015;68(6):1203-22. doi: 10.1080/17470218.2014.978875. Epub 2015 Jan 9.
10
One-back reinforcement dissociates implicit-procedural and explicit-declarative category learning.
Mem Cognit. 2018 Feb;46(2):261-273. doi: 10.3758/s13421-017-0762-8.

引用本文的文献

1
Individual differences in working memory impact the trajectory of non-native speech category learning.
PLoS One. 2024 Jun 10;19(6):e0297917. doi: 10.1371/journal.pone.0297917. eCollection 2024.
2
Imagine to automatize: automatization of stimulus-response coupling after action imagery practice in implicit sequence learning.
Psychol Res. 2023 Oct;87(7):2259-2274. doi: 10.1007/s00426-023-01797-w. Epub 2023 Mar 4.
4
An adaptive linear filter model of procedural category learning.
Cogn Process. 2022 Aug;23(3):393-405. doi: 10.1007/s10339-022-01094-1. Epub 2022 May 5.
5
Incidental covariation learning leading to strategy change.
PLoS One. 2019 Jan 24;14(1):e0210597. doi: 10.1371/journal.pone.0210597. eCollection 2019.

本文引用的文献

1
Automaticity and multiple memory systems.
Wiley Interdiscip Rev Cogn Sci. 2012 May;3(3):363-376. doi: 10.1002/wcs.1172. Epub 2012 Feb 28.
2
Generalization of category knowledge and dimensional categorization in humans (Homo sapiens) and nonhuman primates (Macaca mulatta).
J Exp Psychol Anim Learn Cogn. 2015 Oct;41(4):322-35. doi: 10.1037/xan0000071. Epub 2015 Jul 13.
3
Declarative strategies persist under increased cognitive load.
Psychon Bull Rev. 2016 Feb;23(1):213-22. doi: 10.3758/s13423-015-0867-7.
4
Multiple stages of learning in perceptual categorization: evidence and neurocomputational theory.
Psychon Bull Rev. 2015 Dec;22(6):1598-613. doi: 10.3758/s13423-015-0827-2.
5
Learning robust cortico-cortical associations with the basal ganglia: an integrative review.
Cortex. 2015 Mar;64:123-35. doi: 10.1016/j.cortex.2014.10.011. Epub 2014 Oct 27.
7
Analogical transfer in perceptual categorization.
Mem Cognit. 2012 Apr;40(3):434-49. doi: 10.3758/s13421-011-0154-4.
8
Cortical and striatal contributions to automaticity in information-integration categorization.
Neuroimage. 2011 Jun 1;56(3):1791-802. doi: 10.1016/j.neuroimage.2011.02.011. Epub 2011 Feb 18.
9
Human category learning 2.0.
Ann N Y Acad Sci. 2011 Apr;1224:147-161. doi: 10.1111/j.1749-6632.2010.05874.x. Epub 2010 Dec 23.
10
Evidence for cortical automaticity in rule-based categorization.
J Neurosci. 2010 Oct 20;30(42):14225-34. doi: 10.1523/JNEUROSCI.2393-10.2010.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验