Suppr超能文献

程序类别学习的自适应线性滤波器模型。

An adaptive linear filter model of procedural category learning.

作者信息

Marchant Nicolás, Canessa Enrique, Chaigneau Sergio E

机构信息

Center for Social and Cognitive Neuroscience, School of Psychology, Universidad Adolfo Ibáñez, Avda. Presidente Errázuriz 3328, Las Condes, Santiago, Chile.

Faculty of Engineering and Sciences, Universidad Adolfo Ibáñez, Santiago, Chile.

出版信息

Cogn Process. 2022 Aug;23(3):393-405. doi: 10.1007/s10339-022-01094-1. Epub 2022 May 5.

Abstract

We use a feature-based association model to fit grouped and individual level category learning and transfer data. The model assumes that people use corrective feedback to learn individual feature to categorization-criterion correlations and combine those correlations additively to produce classifications. The model is an Adaptive Linear Filter (ALF) with logistic output function and Least Mean Squares learning algorithm. Categorization probabilities are computed by a logistic function. Our data span over 31 published data sets. Both at grouped and individual level analysis levels, the model performs remarkably well, accounting for large amounts of available variances. When fitted to grouped data, it outperforms alternative models. When fitted to individual level data, it is able to capture learning and transfer performance with high explained variances. Notably, the model achieves its fits with a very minimal number of free parameters. We discuss the ALF's advantages as a model of procedural categorization, in terms of its simplicity, its ability to capture empirical trends and its ability to solve challenges to other associative models. In particular, we discuss why the model is not equivalent to a prototype model, as previously thought.

摘要

我们使用基于特征的关联模型来拟合分组和个体层面的类别学习与迁移数据。该模型假设人们利用纠正性反馈来学习个体特征与分类标准之间的相关性,并将这些相关性进行累加组合以做出分类。该模型是一个具有逻辑输出函数和最小均方学习算法的自适应线性滤波器(ALF)。分类概率通过逻辑函数计算得出。我们的数据涵盖31个已发表的数据集。在分组和个体层面的分析中,该模型表现都非常出色,能够解释大量的可用方差。当拟合分组数据时,它优于其他替代模型。当拟合个体层面的数据时,它能够以高解释方差捕获学习和迁移表现。值得注意的是,该模型仅用极少的自由参数就实现了拟合。我们从其简单性、捕捉经验趋势的能力以及解决其他关联模型所面临挑战的能力等方面,讨论了ALF作为程序分类模型的优势。特别是,我们讨论了为什么该模型并不像之前认为的那样等同于原型模型。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验