Martino Daniele De, Capuani Fabrizio, Martino Andrea De
Institute of Science and Technology Austria (IST Austria), Am Campus 1, Klosterneuburg A-3400, Austria.
Phys Biol. 2016 May 27;13(3):036005. doi: 10.1088/1478-3975/13/3/036005.
The solution space of genome-scale models of cellular metabolism provides a map between physically viable flux configurations and cellular metabolic phenotypes described, at the most basic level, by the corresponding growth rates. By sampling the solution space of E. coli's metabolic network, we show that empirical growth rate distributions recently obtained in experiments at single-cell resolution can be explained in terms of a trade-off between the higher fitness of fast-growing phenotypes and the higher entropy of slow-growing ones. Based on this, we propose a minimal model for the evolution of a large bacterial population that captures this trade-off. The scaling relationships observed in experiments encode, in such frameworks, for the same distance from the maximum achievable growth rate, the same degree of growth rate maximization, and/or the same rate of phenotypic change. Being grounded on genome-scale metabolic network reconstructions, these results allow for multiple implications and extensions in spite of the underlying conceptual simplicity.
细胞代谢基因组规模模型的解空间提供了一个在物理上可行的通量配置与细胞代谢表型之间的映射,在最基本层面上,这些表型由相应的生长速率来描述。通过对大肠杆菌代谢网络的解空间进行采样,我们表明最近在单细胞分辨率实验中获得的经验生长速率分布可以用快速生长表型的更高适应性与缓慢生长表型的更高熵之间的权衡来解释。基于此,我们提出了一个用于大型细菌群体进化的最小模型,该模型捕捉了这种权衡。在这样的框架中,实验中观察到的标度关系编码了与最大可实现生长速率相同的距离、相同程度的生长速率最大化和/或相同的表型变化速率。尽管基本概念简单,但基于基因组规模代谢网络重建,这些结果仍有多种含义和扩展。