Latoski Luís C F, De Martino Andrea, De Martino Daniele
Instituto de Física, Universidade Federal do Rio Grande do Sul, CEP 91501-970 Porto Alegre, RS, Brazil.
Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129 Torino, Italy.
Sci Adv. 2025 Sep 5;11(36):eadv8216. doi: 10.1126/sciadv.adv8216. Epub 2025 Sep 3.
Intercellular cross-talk is essential for the adaptation capabilities of populations of cells. While direct diffusion-driven cell-to-cell exchanges are difficult to map, current nanotechnology enables one to probe single-cell exchanges with the medium. We introduce a mathematical method to reconstruct the dynamic unfolding of intercellular exchange networks from these data, applying it to an experimental coculture system. The exchange network, initially dense, progressively fragments into small disconnected clusters. To explain these dynamics, we develop a maximum-entropy multicellular metabolic model with diffusion-driven exchanges. The model predicts a transition from a dense network to a sparse one as nutrient consumption shifts. We characterize this crossover both numerically, revealing a power-law decay in the cluster-size distribution, and analytically, by connecting to percolation theory. Comparison with data suggests that populations evolve toward the sparse phase by remaining near the crossover. These findings offer insights into the collective organization driving the adaptive dynamics of cell populations.
细胞间的相互作用对于细胞群体的适应能力至关重要。虽然直接的扩散驱动的细胞间交换难以描绘,但当前的纳米技术使人们能够探测单细胞与培养基之间的交换。我们引入一种数学方法,从这些数据重建细胞间交换网络的动态展开过程,并将其应用于一个实验性共培养系统。交换网络最初是密集的,逐渐分裂成小的不相连的簇。为了解释这些动态过程,我们开发了一个具有扩散驱动交换的最大熵多细胞代谢模型。该模型预测,随着营养物质消耗的变化,会从密集网络过渡到稀疏网络。我们通过数值方法表征这种转变,揭示簇大小分布中的幂律衰减,并通过与渗流理论联系进行解析表征。与数据的比较表明,细胞群体通过保持在转变点附近向稀疏阶段演化。这些发现为驱动细胞群体适应性动态的集体组织提供了见解。