Suppr超能文献

协作杂交小鼠双列杂交面板中表型稳健性的遗传结构。

Genetic structure of phenotypic robustness in the collaborative cross mouse diallel panel.

作者信息

Gonzalez P N, Pavlicev M, Mitteroecker P, Pardo-Manuel de Villena F, Spritz R A, Marcucio R S, Hallgrímsson B

机构信息

Instituto de Genética Veterinaria, CCT-CONICET, La Plata, Argentina.

Department of Pediatrics, Cincinnati Children's Hospital Medical Centre, Cincinnati, OH, USA.

出版信息

J Evol Biol. 2016 Sep;29(9):1737-51. doi: 10.1111/jeb.12906. Epub 2016 Jul 8.

Abstract

Developmental stability and canalization describe the ability of developmental systems to minimize phenotypic variation in the face of stochastic micro-environmental effects, genetic variation and environmental influences. Canalization is the ability to minimize the effects of genetic or environmental effects, whereas developmental stability is the ability to minimize the effects of micro-environmental effects within individuals. Despite much attention, the mechanisms that underlie these two components of phenotypic robustness remain unknown. We investigated the genetic structure of phenotypic robustness in the collaborative cross (CC) mouse reference population. We analysed the magnitude of fluctuating asymmetry (FA) and among-individual variation of cranial shape in reciprocal crosses among the eight parental strains, using geometric morphometrics and a diallel analysis based on a Bayesian approach. Significant differences among genotypes were found for both measures, although they were poorly correlated at the level of individuals. An overall positive effect of inbreeding was found for both components of variation. The strain CAST/EiJ exerted a positive additive effect on FA and, to a lesser extent, among-individual variance. Sex- and other strain-specific effects were not significant. Neither FA nor among-individual variation was associated with phenotypic extremeness. Our results support the existence of genetic variation for both developmental stability and canalization. This finding is important because robustness is a key feature of developmental systems. Our finding that robustness is not related to phenotypic extremeness is consistent with theoretical work that suggests that its relationship to stabilizing selection is not straightforward.

摘要

发育稳定性和发育稳态描述了发育系统在面对随机微环境效应、遗传变异和环境影响时将表型变异最小化的能力。发育稳态是将遗传或环境效应的影响最小化的能力,而发育稳定性是将个体内部微环境效应的影响最小化的能力。尽管备受关注,但表型稳健性这两个组成部分背后的机制仍然未知。我们在协作杂交(CC)小鼠参考群体中研究了表型稳健性的遗传结构。我们使用几何形态计量学和基于贝叶斯方法的双列分析,分析了八个亲本品系相互杂交中波动不对称(FA)的大小和颅骨形状的个体间变异。两种测量方法均发现基因型之间存在显著差异,尽管在个体水平上它们的相关性较差。对于变异的两个组成部分,均发现近亲繁殖具有总体正向效应。CAST/EiJ品系对FA以及在较小程度上对个体间方差具有正向加性效应。性别和其他品系特异性效应不显著。FA和个体间变异均与表型极端性无关。我们的结果支持发育稳定性和发育稳态均存在遗传变异。这一发现很重要,因为稳健性是发育系统的关键特征。我们发现稳健性与表型极端性无关,这与理论研究结果一致,即其与稳定选择的关系并非直接明了。

相似文献

1
Genetic structure of phenotypic robustness in the collaborative cross mouse diallel panel.
J Evol Biol. 2016 Sep;29(9):1737-51. doi: 10.1111/jeb.12906. Epub 2016 Jul 8.
2
Development Shapes a Consistent Inbreeding Effect in Mouse Crania of Different Line Crosses.
J Exp Zool B Mol Dev Evol. 2016 Dec;326(8):474-488. doi: 10.1002/jez.b.22722. Epub 2017 Jan 18.
5
Mouse Skull Mean Shape and Shape Robustness Rely on Different Genetic Architectures and Different Loci.
Front Genet. 2019 Feb 12;10:64. doi: 10.3389/fgene.2019.00064. eCollection 2019.
7
Plasticity, canalization, and developmental stability of the Drosophila wing: joint effects of mutations and developmental temperature.
Evolution. 2009 Nov;63(11):2864-76. doi: 10.1111/j.1558-5646.2009.00774.x. Epub 2009 Jul 16.

引用本文的文献

3
Developmental instability and phenotypic evolution in a small and isolated bear population.
Biol Lett. 2021 Apr;17(4):20200729. doi: 10.1098/rsbl.2020.0729. Epub 2021 Apr 21.
4
On Zebrafish Disease Models and Matters of the Heart.
Biomedicines. 2019 Feb 28;7(1):15. doi: 10.3390/biomedicines7010015.
5
Mouse Skull Mean Shape and Shape Robustness Rely on Different Genetic Architectures and Different Loci.
Front Genet. 2019 Feb 12;10:64. doi: 10.3389/fgene.2019.00064. eCollection 2019.
6
Redundancy, Feedback, and Robustness in the Gene Family.
Front Genet. 2018 Nov 13;9:523. doi: 10.3389/fgene.2018.00523. eCollection 2018.
7
QTL Mapping on a Background of Variance Heterogeneity.
G3 (Bethesda). 2018 Dec 10;8(12):3767-3782. doi: 10.1534/g3.118.200790.
8
Epistasis regulates the developmental stability of the mouse craniofacial shape.
Heredity (Edinb). 2019 May;122(5):501-512. doi: 10.1038/s41437-018-0140-8. Epub 2018 Sep 12.
9
The developmental-genetics of canalization.
Semin Cell Dev Biol. 2019 Apr;88:67-79. doi: 10.1016/j.semcdb.2018.05.019. Epub 2018 May 24.
10
Widespread epistasis regulates glucose homeostasis and gene expression.
PLoS Genet. 2017 Sep 29;13(9):e1007025. doi: 10.1371/journal.pgen.1007025. eCollection 2017 Sep.

本文引用的文献

2
GENETICS OF FLUCTUATING ASYMMETRY: A DEVELOPMENTAL MODEL OF DEVELOPMENTAL INSTABILITY.
Evolution. 1999 Apr;53(2):358-375. doi: 10.1111/j.1558-5646.1999.tb03772.x.
4
A POPULATION GENETIC THEORY OF CANALIZATION.
Evolution. 1997 Apr;51(2):329-347. doi: 10.1111/j.1558-5646.1997.tb02420.x.
7
Lifespan modulation in mice and the confounding effects of genetic background.
J Genet Genomics. 2014 Sep 20;41(9):497-503. doi: 10.1016/j.jgg.2014.06.002. Epub 2014 Jun 14.
8
mtDNA sequence, phylogeny and evolution of laboratory mice.
Mitochondrion. 2014 Jul;17:126-31. doi: 10.1016/j.mito.2014.07.006. Epub 2014 Jul 16.
9
Causes and consequences of genetic background effects illuminated by integrative genomic analysis.
Genetics. 2014 Apr;196(4):1321-36. doi: 10.1534/genetics.113.159426. Epub 2014 Feb 5.
10
Cryptic variation in morphological evolution: HSP90 as a capacitor for loss of eyes in cavefish.
Science. 2013 Dec 13;342(6164):1372-5. doi: 10.1126/science.1240276.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验