Suppr超能文献

基于事件数据的重症监护患者分类演变

Evolving classification of intensive care patients from event data.

作者信息

Last Mark, Tosas Olga, Gallo Cassarino Tiziano, Kozlakidis Zisis, Edgeworth Jonathan

机构信息

Department of Information Systems Engineering, Ben-Gurion University of the Negev, Marcus Family Campus, Rager St., Beer-Sheva 84105, Israel.

Department of Infectious Diseases, Guy's and St. Thomas' NHS foundation Trust, Westminster Bridge Road, London SE1 7EH, United Kingdom.

出版信息

Artif Intell Med. 2016 May;69:22-32. doi: 10.1016/j.artmed.2016.04.001. Epub 2016 May 6.

Abstract

OBJECTIVE

This work aims at predicting the patient discharge outcome on each hospitalization day by introducing a new paradigm-evolving classification of event data streams. Most classification algorithms implicitly assume the values of all predictive features to be available at the time of making the prediction. This assumption does not necessarily hold in the evolving classification setting (such as intensive care patient monitoring), where we may be interested in classifying the monitored entities as early as possible, based on the attributes initially available to the classifier, and then keep refining our classification model at each time step (e.g., on daily basis) with the arrival of additional attributes.

MATERIALS AND METHODS

An oblivious read-once decision-tree algorithm, called information network (IN), is extended to deal with evolving classification. The new algorithm, named incremental information network (IIN), restricts the order of selected features by the temporal order of feature arrival. The IIN algorithm is compared to six other evolving classification approaches on an 8-year dataset of adult patients admitted to two Intensive Care Units (ICUs) in the United Kingdom.

RESULTS

Retrospective study of 3452 episodes of adult patients (≥16years of age) admitted to the ICUs of Guy's and St. Thomas' hospitals in London between 2002 and 2009. Random partition (66:34) into a development (training) set n=2287 and validation set n=1165. Episode-related time steps: Day 0-time of ICU admission, Day x-end of the x-th day at ICU. The most accurate decision-tree models, based on the area under curve (AUC): Day 0: IN (AUC=0.652), Day 1: IIN (AUC=0.660), Day 2: J48 decision-tree algorithm (AUC=0.678), Days 3-7: regenerative IN (AUC=0.717-0.772). Logistic regression AUC: 0.582 (Day 0)-0.827 (Day 7).

CONCLUSIONS

Our experimental results have not identified a single optimal approach for evolving classification of ICU episodes. On Days 0 and 1, the IIN algorithm has produced the simplest and the most accurate models, which incorporate the temporal order of feature arrival. However, starting with Day 2, regenerative approaches have reached better performance in terms of predictive accuracy.

摘要

目的

本研究旨在通过引入一种新的范式——事件数据流的演化分类,来预测患者在每次住院日的出院结果。大多数分类算法隐含地假设在进行预测时所有预测特征的值都是可用的。在演化分类设置(如重症监护患者监测)中,这一假设不一定成立,在这种情况下,我们可能有兴趣尽早根据分类器最初可用的属性对被监测实体进行分类,然后随着其他属性的到来,在每个时间步(如每天)不断完善我们的分类模型。

材料与方法

一种名为信息网络(IN)的一次性遗忘决策树算法被扩展以处理演化分类。新算法名为增量信息网络(IIN),它根据特征到达的时间顺序来限制所选特征的顺序。在英国两个重症监护病房(ICU)收治的成年患者的8年数据集上,将IIN算法与其他六种演化分类方法进行比较。

结果

对2002年至2009年期间伦敦盖伊医院和圣托马斯医院ICU收治的3452例成年患者(≥16岁)的病例进行回顾性研究。随机划分为一个开发(训练)集n = 2287和一个验证集n = 1165。与病例相关的时间步:第0天——ICU入院时间,第x天——在ICU第x天结束时。基于曲线下面积(AUC)的最准确决策树模型:第0天:IN(AUC = 0.652),第1天:IIN(AUC = 0.660),第2天:J48决策树算法(AUC = 0.678),第3 - 7天:再生IN(AUC = 0.717 - 0.772)。逻辑回归AUC:0.582(第0天) - 0.827(第7天)。

结论

我们的实验结果尚未确定一种用于ICU病例演化分类的单一最优方法。在第0天和第1天,IIN算法产生了最简单且最准确的模型,该模型纳入了特征到达的时间顺序。然而,从第2天开始,再生方法在预测准确性方面达到了更好的性能。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验