Suppr超能文献

对大肠杆菌DNA聚合酶V所施加的复杂调控水平的见解。

Insights into the complex levels of regulation imposed on Escherichia coli DNA polymerase V.

作者信息

Goodman Myron F, McDonald John P, Jaszczur Malgorzata M, Woodgate Roger

机构信息

Departments of Biological Sciences and Chemistry, University of Southern California, University Park, Los Angeles, CA 90089-2910, USA.

Laboratory of Genomic Integrity, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892-3371, USA.

出版信息

DNA Repair (Amst). 2016 Aug;44:42-50. doi: 10.1016/j.dnarep.2016.05.005. Epub 2016 May 13.

Abstract

It is now close to 40 years since the isolation of non-mutable umu/uvm strains of Escherichia coli and the realization that damage induced mutagenesis in E.coli is not a passive process. Early models of mutagenesis envisioned the Umu proteins as accessory factors to the cell's replicase that not only reduced its normally high fidelity, but also allowed the enzyme to traverse otherwise replication-blocking lesions in the genome. However, these models underwent a radical revision approximately 15 years ago, with the discovery that the Umu proteins actually encode for a DNA polymerase, E.coli pol V. The polymerase lacks 3'→5' exonucleolytic proofreading activity and is inherently error-prone when replicating both undamaged and damage DNA. So as to limit any "gratuitous" mutagenesis, the activity of pol V is strictly regulated in the cell at multiple levels. This review will summarize our current understanding of the myriad levels of regulation imposed on pol V including transcriptional control, posttranslational modification, targeted proteolysis, activation of the catalytic activity of pol V through protein-protein interactions and the very recently described intracellular spatial regulation of pol V. Remarkably, despite the multiple levels at which pol V is regulated, the enzyme is nevertheless able to contribute to the genetic diversity and evolutionary fitness of E.coli.

摘要

自分离出大肠杆菌的非突变型umu/uvm菌株,并认识到大肠杆菌中损伤诱导的诱变不是一个被动过程以来,现已接近40年。早期的诱变模型将Umu蛋白设想为细胞复制酶的辅助因子,它不仅降低了其通常的高保真度,还使该酶能够跨越基因组中原本会阻碍复制的损伤。然而,大约15年前,随着Umu蛋白实际上编码一种DNA聚合酶——大肠杆菌聚合酶V的发现,这些模型经历了彻底的修订。该聚合酶缺乏3'→5'核酸外切酶校对活性,在复制未损伤和损伤的DNA时都固有地容易出错。为了限制任何“无端”的诱变,聚合酶V的活性在细胞内受到多个层面的严格调控。本综述将总结我们目前对聚合酶V所受多种调控水平的理解,包括转录控制、翻译后修饰、靶向蛋白水解、通过蛋白质-蛋白质相互作用激活聚合酶V的催化活性以及最近描述的聚合酶V的细胞内空间调控。值得注意的是,尽管聚合酶V受到多个层面的调控,但该酶仍然能够促进大肠杆菌的遗传多样性和进化适应性。

相似文献

1
Insights into the complex levels of regulation imposed on Escherichia coli DNA polymerase V.
DNA Repair (Amst). 2016 Aug;44:42-50. doi: 10.1016/j.dnarep.2016.05.005. Epub 2016 May 13.
2
Regulation of Mutagenic DNA Polymerase V Activation in Space and Time.
PLoS Genet. 2015 Aug 28;11(8):e1005482. doi: 10.1371/journal.pgen.1005482. eCollection 2015 Aug.
3
A Comprehensive View of Translesion Synthesis in Escherichia coli.
Microbiol Mol Biol Rev. 2020 Jun 17;84(3). doi: 10.1128/MMBR.00002-20. Print 2020 Aug 19.
4
Escherichia coli Y family DNA polymerases.
Front Biosci (Landmark Ed). 2011 Jun 1;16(8):3164-82. doi: 10.2741/3904.
6
Mutations for Worse or Better: Low-Fidelity DNA Synthesis by SOS DNA Polymerase V Is a Tightly Regulated Double-Edged Sword.
Biochemistry. 2016 Apr 26;55(16):2309-18. doi: 10.1021/acs.biochem.6b00117. Epub 2016 Apr 12.
7
The "tale" of UmuD and its role in SOS mutagenesis.
Bioessays. 2002 Feb;24(2):141-8. doi: 10.1002/bies.10040.
8
Competitive fitness during feast and famine: how SOS DNA polymerases influence physiology and evolution in Escherichia coli.
Genetics. 2013 Jun;194(2):409-20. doi: 10.1534/genetics.113.151837. Epub 2013 Apr 15.
9
Conformational regulation of Escherichia coli DNA polymerase V by RecA and ATP.
PLoS Genet. 2019 Feb 4;15(2):e1007956. doi: 10.1371/journal.pgen.1007956. eCollection 2019 Feb.
10
Investigating the mechanisms of ribonucleotide excision repair in Escherichia coli.
Mutat Res. 2014 Mar;761:21-33. doi: 10.1016/j.mrfmmm.2014.01.005. Epub 2014 Feb 1.

引用本文的文献

1
Engineering the Marine TAC125 via the pMEGA Plasmid Targeted Curing Using PTasRNA Technology.
Microorganisms. 2025 Feb 2;13(2):324. doi: 10.3390/microorganisms13020324.
2
Common themes in architecture and interactions of prokaryotic PolB2 and Pol V mutasomes inferred from studies.
Comput Struct Biotechnol J. 2025 Jan 16;27:401-410. doi: 10.1016/j.csbj.2025.01.010. eCollection 2025.
3
Escherichia coli DNA replication: the old model organism still holds many surprises.
FEMS Microbiol Rev. 2024 Jun 20;48(4). doi: 10.1093/femsre/fuae018.
4
Role of RelA-synthesized (p)ppGpp and ROS-induced mutagenesis in acquisition of antibiotic resistance in .
iScience. 2024 Mar 26;27(4):109579. doi: 10.1016/j.isci.2024.109579. eCollection 2024 Apr 19.
5
SOS genes are rapidly induced while translesion synthesis polymerase activity is temporally regulated.
Front Microbiol. 2024 Mar 26;15:1373344. doi: 10.3389/fmicb.2024.1373344. eCollection 2024.
9
Reactive oxygen species accelerate acquisition of antibiotic resistance in .
iScience. 2023 Oct 31;26(12):108373. doi: 10.1016/j.isci.2023.108373. eCollection 2023 Dec 15.

本文引用的文献

1
Anionic Phospholipids Stabilize RecA Filament Bundles in Escherichia coli.
Mol Cell. 2015 Nov 5;60(3):374-84. doi: 10.1016/j.molcel.2015.09.009. Epub 2015 Oct 17.
2
Regulation of Mutagenic DNA Polymerase V Activation in Space and Time.
PLoS Genet. 2015 Aug 28;11(8):e1005482. doi: 10.1371/journal.pgen.1005482. eCollection 2015 Aug.
3
A RecA protein surface required for activation of DNA polymerase V.
PLoS Genet. 2015 Mar 26;11(3):e1005066. doi: 10.1371/journal.pgen.1005066. eCollection 2015 Mar.
5
Competitive fitness during feast and famine: how SOS DNA polymerases influence physiology and evolution in Escherichia coli.
Genetics. 2013 Jun;194(2):409-20. doi: 10.1534/genetics.113.151837. Epub 2013 Apr 15.
6
Structural model of the Y-Family DNA polymerase V/RecA mutasome.
J Mol Graph Model. 2013 Feb;39:133-44. doi: 10.1016/j.jmgm.2012.09.005. Epub 2012 Nov 27.
7
Dimer exchange and cleavage specificity of the DNA damage response protein UmuD.
Biochim Biophys Acta. 2013 Feb;1834(2):611-20. doi: 10.1016/j.bbapap.2012.11.008. Epub 2012 Dec 7.
8
Simple and efficient purification of Escherichia coli DNA polymerase V: cofactor requirements for optimal activity and processivity in vitro.
DNA Repair (Amst). 2012 Apr 1;11(4):431-40. doi: 10.1016/j.dnarep.2012.01.012. Epub 2012 Feb 15.
9
The active form of DNA polymerase V is UmuD'(2)C-RecA-ATP.
Nature. 2009 Jul 16;460(7253):359-63. doi: 10.1038/nature08178.
10
Characterization of polVR391: a Y-family polymerase encoded by rumA'B from the IncJ conjugative transposon, R391.
Mol Microbiol. 2007 Feb;63(3):797-810. doi: 10.1111/j.1365-2958.2006.05561.x.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验